
EECE 412 Term Project Report

1

Abstract — For the purposes of this project we

analyzed two obfuscation software products, namely

Codelock and Codelock Tracker. These products are

used to encrypt applications developed in PHP. The

goal of our analysis was to determine the

effectiveness of the protection provided by these

products. We were able to obtain the keys and

decrypt files encrypted by either of the two products.

Moreover, we were then able to exploit severe

security flaws present in Codelock. This report

outlines the details of the analyzed software,

summarizes external efforts related to our project,

describes our approach and analysis methodology,

and provides a discussion of the obtained results as

well as the conclusions we came to based on our

findings.

I. INTRODUCTION

Hypertext Preprocessor (PHP) is a scripting language

most commonly used for web development [1]. PHP was

developed in the middle of the 1990‟s and has been

dramatically gaining popularity over the last decade.

Much of the appeal to PHP consists of the ease of

integration with open source web servers and database

applications. Since PHP is a scripting language, it is

never actually compiled into binary. Source code written

in PHP is converted on-the-fly to an external format that

is executed by a PHP engine, which creates machine-

readable binary code. This carries the implication that

the source code for a PHP application always has to exist

in plaintext format and cannot be packaged into a

standalone, executable file. Due to this fact, PHP

developers that wish to distribute their applications must

do so with at the risk that someone could easily violate

licensing restrictions or potentially modify their code

and redistribute it under as a brand new product.

Conversely, developers using compiled languages, such

as C++ or Java, do not have the need for such concerns,

as their source code is always directly translated into

binary data and, consequently, much more difficult to

obtain, modify and redistribute.

In attempts to overcome the issue of potential

intellectual property theft for PHP application

developers, several commercial products have become

available on the market for PHP source code encryption.

Encrypting PHP source code allows developers to

distribute their code without the fear of attacks from

malicious users.

There are two common methods of encrypting PHP

source code. The first method is fairly secure, yet

expensive and complicated. It involves converting the

code into binary format, releasing it in this format to the

public, and then installing an extension application on

the server, set up to parse this binary data. Besides the

aforementioned negatives of this method, this encryption

tactic is also problematic due to the fact that hosting

service providers are often reluctant to install PHP

parsing applications on their servers. The second, less

expensive encryption option involves obfuscating the

source code. This is achieved through converting the

source code into ciphertext using a specified key. The

ciphertext is decrypted at runtime, briefly exposing the

plaintext source code to the local PHP engine used to

interpret it. [2]

For many PHP developers, the only line of defense from

theft involves utilizing PHP encryption software

designed in accordance with one of the abovementioned

methods. As individuals familiar with software

development, we were able to recognize the importance

of protecting intellectual property and use this as a

Analysis of PHP Obfuscation Software

 December 7, 2010

Janina Fedjko, Joel Beales, and Karl Campbell

Department of Electrical and Computer Engineering

University of British Columbia

Vancouver, Canada

jfedjko@gmail.com

joel@xeo.ca

krlcmpbll@gmail.com

EECE 412 Term Project Report

2

motivation for carrying out this project, the purpose of

which was to determine the level of protection provided

by some obfuscation software products. We analyzed

two products developed by Codelock, a company in

New Zealand that specializes in encryption software

development. These products are Codelock and

Codelock Tracker. The developers claim that both

products provide wholesome protection for PHP

applications. Our goal was to evaluate the feasibility of

decrypting files that have been encrypted with these

products.

This report outlines the details of the analyzed software,

summarizes external efforts related to our project,

describes our approach and analysis methodology, and

provides a discussion of the obtained results as well as

the conclusions we came to based on our findings.

II. ANALYZED SYSTEM

As mentioned, two software products were analyzed for

the purposes of this project. These are Codelock and

Codelock Tracker, both developed by Codelock. The

two products are not at all related in design, only by

brand.

Codelock is a standalone PHP application that accepts a

user-specified key, an optional expiration date for the

key and a PHP file in plaintext format as inputs, and

produces an encrypted source file. In order to execute

the source file, the encryption must be reversed with the

same key that was used to encrypt it.

Codelock Tracker is a more advanced product. Its main

advantage is the inclusion of a “call-home” feature.

Similarly to Codelock, it encrypts a plaintext file with a

key, except this key is provided by the home server

rather than specified by the user. During execution, the

local application contacts the home server, requesting

the key needed for decryption. This request contains the

encrypted file and information about the local server

environment necessary for authentication. Once the

home server requests the key, the application uses it in

combination with the file serial number to perform the

decryption.

III. RELATED WORK

We have performed extensive Internet research on the

works done by others in relation to the subject of

decrypting files that contain encrypted PHP source code.

Our search, however, has been mostly futile. Although

somewhat disappointing, the lack of relevant findings is

not at all puzzling. Openly publishing results of any

attempts to break or exploit commercial software would

carry legal implications and may entail serious

consequences.

We did, however, notice countless advertisements from

people looking for someone capable of decrypting files

that have been encrypted with either Codelock or

Codelock Tracker. This implies that both of these

products have been broken by others in the past,

although whether or not the approach was similar to

others cannot be determined.

We have also found several instances of software that

was advertised as tools for decrypting files encrypted

with Codelock. These tools, however, were nothing

more than disguised malware and did not function as

advertised. No such tools were found for CodLock

Tracker.

IV. ANALYSIS METHODOLOGY

We began our analysis of Codelock by downloading a

fifteen day free trial version of the software from the

company website. Then, through trial and error, we

began exploring the functionality of the software.

Interestingly enough, it was discovered that Codelock

was actually developed in PHP and then used to encrypt

its own source code.

The source code for Codelock's logic was contained in a

file named 'codelock.php' and included with other

necessary software components, all of which were

encrypted. The task at hand involved reverse engineering

this file. Our first clue to accomplishing this task was a

long string of data that was being executed with the

following command: eval(base64_decode($data)). This

command performs the actions specified by the string of

data passed as a parameter to the base64_decode($data)

function, which decodes the specified data in base-64.

This indicates that the first layer of data has been

obfuscated through base-64 encoding. Replacing

eval(…) with echo(…) yielded in the program printing

the decoded version of the data. After the first

replacement, we searched the decoded data for another

instance of eval(…) and replaced it with echo(…) yet

again. This step was performed several times until every

obfuscation layer has been removed and the final

iteration of echo(…) yielded in the reveal of the

unencrypted source code that is used to decrypt and

execute encrypted files. From here onwards we will refer

to this component as the „decrypter.‟

Every encrypted file contains an encrypted payload. By

examining the decrypter, we were able to determine

where the payload is parsed, decrypted and executed. It

EECE 412 Term Project Report

3

was discovered that the decrypter uses the first three

characters of the key to perform a simple replacement to

convert ciphertext to plaintext, which is then decoded

using base64_decode($data).

Our next goal involved extracting the key from the

encrypted file. Through elementary string manipulation

and a series of base-64 decoding operations, the key was

discovered in the „codelock.php‟ file in plaintext format,

under several layers of base-64 encoding.

Once we mastered key extraction and source file

decryption, we began looking for more vulnerabilities in

the Codelock software. One crucial flaw of the decrypter

is the presence of @extract($_REQUEST) function.

$_REQUEST is the global array, which contains all the

information gathered from cookies, and the post() and

get() methods for exchanging information. For example,

a query such as: script.php?foo=bar will make the

following entry to the $_REQUEST array:

$_REQUEST[foo] = bar, which can then be easily

accessed to gain the corresponding data. The function:

@extract($_REQUEST) is a simple, yet extremely

unsafe method of accessing the information in the

$_REQUEST array, turning the otherwise static array

into a set of modifiable variables. With this knowledge,

a malicious user can set the initial value of any variable

in the script, potentially causing security risks. This line

has the same effect as enabling register_globals in a

PHP configuration. Due to the fact that variables that

have been initialized during the decryption of the source

code maintain these values during execution, scripts that

have been encrypted with Codelock gain security risks

that the developer would assume to not exist.

Another critical security problem that we discovered is

associated with the way Codelock performs decryptions

on the Apache server in Microsoft Windows

environment. When Codelock decrypts a source file, it

places the unencrypted data into a temporary file, which

is deleted upon execution of the script. The path for this

temporary file is stored in the $_REQUEST array.

Because of the aforementioned presence of

@extract($_REQUEST), we were able to manually

specify the location of the temporary file. Setting the

appropriate variable using the URL query string to a

filename of a file that already exists on the server causes

that file to be overwritten and deleted, posing an

obviously severe security issue. This exploit can be used

to delete any file within the web root with appropriate

permissions. In order to exploit this vulnerability, an

attacker needs to know nothing beyond the URL of a file

on the server that has been encrypted with Codelock.

Fortunately, this vulnerability does not exist on all server

types, as the creation and deletion of the temporary file

is handled differently by different systems. As

mentioned, the vulnerability was present in our install of

Apache and PHP on a Microsoft Windows machine;

however, on a Ubuntu Linux machine the vulnerability

no longer existed. Most web servers utilize Linux as

their operating system, so this vulnerability is most

likely not widespread, but it does pose a significant

security risk to the websites that are vulnerable.

After successfully exploiting Codelock, we turned our

attention to Codelock Tracker. We set up the Codelock

Tracker server and attempted to intercept the

communication between a script requesting its key and

the server supplying the key to the script. It was found

that for authorization purposes the script sends

environment information to the server, namely a hash of

the file itself, the IP address of the local host, the URL of

the file, and the serial number specific to the script‟s

license. Once the server receives and verifies the script‟s

credentials, it simply sends back the key without any

further authentication or challenges. The key exchange

takes place using the POST method of the HTTP

protocol, which is the same method generally used to

submit information to web forms in an Internet browser.

After discovering the steps taken during the

authorization sequence, introducing a replay attack to

retrieve the key for decrypting the script did not present

a challenge. To accomplish this, we simply needed to

collect the appropriate credentials and place them in our

own web form. There was no lockout or warning for the

software administrator that somebody was providing

false credentials when authentication was failed

intentionally.

Upon retrieving the key, we were faced with the

challenge of decrypting the source file. Through analysis

of the encrypted file, we were able to isolate the function

that uses the key to decrypt the ciphertext. This function

first performs a base64_decode(…) of the key obtained

from the server. Then, the ASCII value of each character

of the key is bitwise XOR'ed with the ASCII value of

each character of the serial number to produce a „session

key.‟ Similarly, the session key is then bitwise XOR‟ed

with the ASCII values of ciphertext of the encrypted

script, revealing the source code in plaintext format.

Based on these findings, the encryption method

employed by Codelock Tracker can be categorized as a

block cipher with an electronic codebook (ECB) mode

of operation. The key returned by the home server is an

ASCII string of 255 characters, which translates into bit-

strength of 1785 bits. Clearly, attempting to retrieve the

key through brute force is unfeasible; however, if the

encrypted file is large enough, it may be possible to

EECE 412 Term Project Report

4

obtain some portions of the code due to repeated

segments created by the ECB mode encryption.

V. RESULTS

We were extremely satisfied with the results obtained

through our analysis of Codelock and Codelock Tracker.

We were able to obtain the keys and decrypt files

encrypted with either software, thereby achieving the

main goal of our project. Then, through extensive

analysis, we were able to comprehend the decryption

algorithm used by both products, which allowed us to

perform and reverse encryptions on any PHP

application. Furthermore, we were able to discover and

exploit severe security issues associated with Codelock,

including the enabling of the variables contained in the

$_REQUEST array and the ability to delete files that

have been encrypted with Codelock from the web root

directory.

Moreover, we developed a set of tools for systematic

decryption of files and vulnerability exploitation

associated with both Codelock and Codelock Tracker.

The tool created for Codelock accepts the filename of an

encrypted file as a parameter and extracts the key. The

key is then entered into another tool that we developed,

which also accepts the corresponding filename and

produces the source code in plaintext format. We also

developed a tool that deletes a user-specified file that has

been encrypted with Codelock from a web root directory

of the web server that contains this file. The tool that

was developed for Codelock Tracker mimics the “call-

home” key request to obtain the key for an encrypted

file. Then another tool accepts this key, along with the

encrypted file and the serial number, and produces the

code in plaintext format.

VI. DISCUSSION

It is clear that a PHP script that has been encrypted with

either Codelock or Codelock Tracker is not fully

protected, as the developers of the products would like

the users to believe. At stake are users‟ confidentiality,

integrity and availability of resources. By exploiting

vulnerabilities present in Codelock and Codelock

Tracker, malicious users are able to retrieve PHP

developers‟ intellectual property and redistribute it as

their own. Moreover, if targeted under specific

conditions, unsuspecting developers can completely lose

the contents of their websites. When using Codelock and

Codelock Tracker, developers‟ applications are

threatened by deception, disruption and usurpation.

The encryption method used by Codelock attempts to

achieve security through obscurity, not following any

recognizable encoding format. The fact that the software

only uses the first three characters of the key for

encryption leaves the encrypted files vulnerable to brute

force attacks. Moreover, even if the key is unknown, the

plaintext code derived based on any input for the key is

still somewhat readable to anyone familiar with PHP

scripting. Codelock Tracker, on the other hand, utilizes

every character of the 255-character string to encrypt

and decrypt.

Moreover, Codelock creates a major security issue for

many web servers that host scripts, which have been

encrypted with Codelock by exposing the variables

contained in the $_REQUEST array. This flaw is

frightening, as otherwise secure scripts are made

insecure because of this vulnerability. Even more

worrisome is the fact that distributing a fix for this

vulnerability is extremely difficult or even not viable.

Every script encrypted with Codelock would need to be

decrypted and then re-encrypted using a patched version.

As Codelock is a commercial application, it should have

been thoroughly tested internally before being released

for public use. The effects of tampering with publically

accessible variables should have been investigated on

multiple server configurations prior to the product's

release. PHP developers who are trusting Codelock to

protect their property are paying for software that

contains a vulnerability that likely would not have

existed had the product been thoroughly tested.

It was surprising to discover was how much stronger the

encryption methods used in Codelock Tracker are than

those used by Codelock. In fact, Codelock Tracker

would have been a fairly effective product, had it not

contained a flaw in its authorization technique.

The first principle of designing secure systems that was

violated by the developers of Codelock is the Principle

of Open Design. The proprietary encryption method

utilized by the software can best be described as

providing security through obscurity, rather than through

any actually secure techniques. The main method of

encryption consists of repeatedly performing base-64

encodings, which is typically intended for representing

data in a different format, rather than converting it to

ciphertext.

Another design principle violated by Codelock

developers is the principle of Layered Defense. It can

even be said that Codelock breaks down defenses

offered by native PHP settings by its implementation of

@extract($_REQUEST). We believe that this line likely

EECE 412 Term Project Report

5

exists because Codelock was originally developed when

register_globals being enabled in PHP was the default

setting. Then, rather than rewriting Codelock to support

this change, the developers injected a flaw into the

system as a simple fix for compatibility issues.

Finally, both Codelock and Codelock Tracker violate the

Principle of Questioning Assumptions. Had the

developers constantly re-examined their assumptions

about threat agents, assets and the environment of the

system, they would have likely been able discover the

vulnerabilities present in their products and derive viable

solutions.

A simple improvement for Codelock involves hashing

the key stored in the encrypted file and using every

character of the key for encrypting. Another major

improvement would be to derive a more sophisticated

encryption technique. PHP modules such as Mcrypt are

capable of performing two-way encryptions with

industry standard encryption algorithms. Codelock

developers could layer the defenses by combining a non-

proprietary encryption mechanism with already used

obfuscation techniques.

An improvement on Codelock Tracker would be to

implement a more sophisticated authentication process

that is not so simple to imitate. Implementing a nonce

feature could greatly reduce the vulnerability of

Codelock Tracker. However, such an exchange would

increase the response time for the key return.

Additionally, the tracker software may want to

implement a lock out feature for users providing invalid

information when trying to request a key. If hashes or

other authentication information is invalid, somebody is

likely in the process of attempting to decrypt sources. As

the encrypted source is essentially secure without the

key, it would be best to block these users before they are

successful in their efforts. It may also be worthwhile to

use a different mode of operation in the implementation

of the block cipher to prevent any risk of deciphering

repeated parts created by ECB.

VII. CONCLUSION

There are two methods of encryption PHP scripts. The

first method involves converting code into binary

format, whereas the second method involves

obfuscation. The former is a much more expensive

option, limiting its availability to smaller developers,

while the latter is cheaper, but less secure. For the

purposes of this project, we analyzed the strength of

protection provided by two obfuscation products,

namely Codelock and Codelock Tracker. We were able

to obtain the keys and decrypt files that were encrypted

with either of the two products. Moreover, we were able

to exploit serious security flaws present in Codelock.

The encryption technology of Codelock was determined

to be fairly weak, starting with insufficient password

strength and finishing with ineffective encryption

mechanism. Codelock Tracker is a much stronger

product, with its main vulnerability residing in its

authentication process. This vulnerability allows for

replay attacks when retrieving the key from the

Codelock Tracker home server.

While performing our extensive analysis and research,

we noticed that Codelock Tracker was recently reverted

into Beta stage and has become unavailable for purchase

through the Codelock website. Hopefully, some of its

vulnerabilities have been discovered and the company is

working on repairing and improving the software. It is

recommended that the authentication process is

improved in Codelock Tracker and the severe

vulnerabilities present in Codelock are patched before

unsuspecting developers fall victim to theft of their

intellectual property.

REFERENCES

[1] The PHP Group. "History of PHP and related

projects". December 3, 2010. http://ca3.php.net/history

December 6, 2010.

[2] Maung, Ei. “Compiled Languages vs. Scripting

Languages.” Ei Maung’s Blog.

http://eimg.wordpress.com/2007/12/31/compiled-

languages-vs-scripting-languages/. December 6, 2010.

http://www.php.net/history
http://www.php.net/history
http://www.php.net/history
http://ca3.php.net/history
http://eimg.wordpress.com/2007/12/31/compiled-languages-vs-scripting-languages/
http://eimg.wordpress.com/2007/12/31/compiled-languages-vs-scripting-languages/

