
EECE 412 Term Project Report

Security Analysis of Windows

Live Messenger

December 6, 2010

Derick H., Christopher E., John K., and Oscar H..

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, Canada

derick.hpy@gmail.com, pnutz0@gmail.com, jhyup.kang@gmail.com, oscarhou@gmail.com

Abstract--- Windows Live Messenger (WLM) is a free online

instant messaging application by Microsoft that allows users

to chat with their friends around the world. This report

examines the security of WLM’s voice chat component, an

alternative to the primarily text-based communication.

Through our security analysis, we were able to find WLM’s

audio protocol for voice chat and using a Dynamic Link

Library (DLL) called “rtmpltfm,” it is possible to obtain the

proprietary audio codec to snoop conversations by simply

using an internet traffic analyzer such as Wireshark. To

counter such attacks, voice encryption can be used from

client to client or public encryption tools could be applied to

prevent packet snooping of voice chats.

I. INTRODUCTION

HIS document details an investigation into the

security of Microsoft’s Windows Live Messenger

(WLM). WLM is an online instant messaging program

which enables users to converse through text, voice or

video. In June 2009, WLM had over 330 million users

world-wide; it is likely that many of those users used, or

still use the voice chat features offered by WLM [1]. The

voice chat component is fast and is a cost effective way to

save on long distance call fees that would apply in a

telephone call. However, many users are either not

concerned or unaware of security issues that exist while

using WLM in a public network. This report will

investigate the security in WLM voice chat and determine

whether privacy is at risk for WLM users.

Similar analysis and research have been

conducted on WLM prior to this report. A group in the

2007 cohort of EECE 412 performed a security analysis of

Microsoft Notification Protocol (MSNP) where WLM and

other instant messaging applications initiate MSNP on

their clients then connects to the .NET Messenger Service

[2]. There exists an open-source application called “aMSN”

which is an instant messenger application that enables

Linux users to connect to the WLM servers, allowing them

to use their WLM accounts to start chatting.

We analyzed a full voice chat session while using

WLM and were able to formulate the initiation procedures

when commencing a voice chat program. We also

determined the type of data sent during a voice chat which

contained the primary audio protocol used to decode audio

after transmission. The DLL component of WLM which is

used to reference the audio protocol was then studied in

order to reverse-engineer the audio codec. Required tools

such as disassemblers and Application Program Interfaces

(API) for media-based development were researched and

familiarized to reproduce the codec and decoded voice

chat sessions from WLM.

Despite our efforts in reverse engineering the

DLL library, we were unable to produce a finished codec

to play payload dumps produced from voice chat sessions.

However, this is primarily due to the time-constraints

involved in familiarizing the tools involved and

understanding the level assembly required. Nonetheless,

analysis of the DLL file reveals that reverse engineering of

Microsoft’s proprietary codecs is in fact possible. An

implication of this finding is that WLM video and audio

chat packets can be intercepted and replayed by a third

party. This poses a security risk as many users are

unaware of the lack of encryption involved in WLM

conversations. Therefore, there will still be individuals

using WLM video and audio chat features while assuming

their session is secure.

Open Design principle of secure systems was

found to be violated in our security analysis in addition to

T

confidentiality. WLM’s design information is not public to

users hence it cannot be scrutinized by security

communities. WLM does not provide confidentiality to its

users as many of its activities can be observed using

packet analyzer tools.

Currently, WLM add-on tools only add

encryption to text-based chat messaging, not audio and

video chat. The concept behind an add-on is similar to

client-to-client encryption, although different where as the

encrypted message produced by the add-on must be

decrypted on the other side. Since the encryption method

is secret, the same add-on must exist on the receiving end

of the message in order to decrypt it. This is possible

among small groups of contacts, but since millions of

users use WLM that are unaware of the privacy faults of

the program, it would not work in preventing the

problem. We propose WLM incorporate a feature within

their program to encrypt the data and decrypt it on the

other end. Since it is undesirable to have a possible delay

this encryption could produce from an otherwise real-time

conversation, we suggest this feature be optional. This

feature would only work if both users had the security

function on during the conversation. WLM gives

warnings to users in the chat box for reasons including the

other user having a status of “busy” or “away.” It would

not be difficult to also include a message notifying a user

that their contact has message security turned on;

prompting them to do so as well if they wish.

 The problem with using a disassembler on a

shared library or executable is valid for all programs, not

just WLM. Since we chose to analyze WLM and not the

protection of these files, we did not look into a means of

protection for these files. The obfuscation of these shared

libraries could help to prevent hackers from accessing the

addresses and overall assembly of the DLL. Some gaming

companies ensure their files are not tampered with a

privacy agreement when installing the game. This privacy

agreement would allow the company to hack into the

user’s system and snoop on what programs they are using

[3]. If users run programs that modify the registry of the

company’s files, they act out a form of punishment

towards the user. Even though this method would work,

we would not suggest this for WLM because of the many

privacy concerns it would bring up upon release.

II. ANALYZED SYSTEM

 WLM is a program that is used by millions of

users on a daily basis. Primarily as a text-based instant

messaging client, the addition of voice and video chat

features have been welcomed as two new means to pass

along information. The system used in order to allow

these new features to bring about a free flow of

information is built upon the Microsoft servers. As all

network communication revolves around the sending and

receiving of packets, WLM works in the same way. Each

user must log in to their account using their e-mail and

password on the WLM client and initiate either a voice or

video conversation with somebody on their contact

list. The reason this conversation can exist is because both

contacts have stored the e-mail address of the other. In

reality, what is happening is a sequence of packets is being

sent to the corresponding Microsoft server for voice chat:

http://relay.voice.messenger.msn.com. The server will

respond to the client with the IP address of the other user

as well as a port to send packets to, which can be used to

receive a steady stream of data.

 A session initiation protocol (SIP) hand-shaking

conversation will occur, where one user INVITEs another

to a voice chat. After the other user accepts, information

is passed between the two users in a packet-based standard

SIP conversation in order to properly setup a real-time

voice chat. The SIP portion of each packet is encrypted

with Base64. SIP uses TCP to complete this, while

immediately after the proper initiation finishes, a UDP

conversation begins the actual transfer of data. These

packets are sent using the real-time transfer protocol

(RTP). Although this data is not encrypted in any way, it

is encoded with Microsoft’s proprietary codec, x-

msrta. WLM uses a variety of codecs, but the most

commonly used one is x-msrta [4]. This codec was found

in all of the packets that we worked with for audio chat.

III. RELATED WORK

A group in the 2007 cohort of EECE 412 performed

a security analysis of MSNP in WLM. MSNP is the

protocol on the client-side WLM applications that

communicate with the .NET Messenger Servers regarding

notifications and initiation of chat conversations. For

analysis, they set up a virtual machine using Windows XP

operating system as the victim and used tools such as

WinDump and Bittwist to packet-sniff and edit or generate

packets. They revised TCP hijacking and created their

own attack called application-based TCP hijacking. MSNP

did not authenticate commands sent between the client and

the .NET Message server hence they were able to spoof

commands to the client and server and were able to keep

the end-to-end connection alive.

aMSN software is an open-source application

used for Linux-based operating systems that allow users to

connect to their WLM accounts. Although this software is

not a direct result of an analysis project, much analyzing

and design was performed to create it. aMSN first began

with a simple text-based functionality but has grown into

have full audio, video features and many elements that

exist in WLM. Much reverse-engineering was performed

by its developers as many of the WLM design is not open

for the public. For voice chat however, they avoided

reverse engineering the audio codec and instead chose to

initiate the chat using another codec supported by WLM

which has an open implementation [5].

IV. ANALYSIS METHODOLGY

IDA is a freely available software that can be found

online to disassemble executable or DLL files. Using this,

we were able to disassemble WLM file to see the

assembly code of how the program functioned. The next

step we took was to find related fields or strings where the

messenger client interacted with codecs, encoders,

decoders and the x-msrta codec. Another function in the

IDA program that we used was the “Translate to pseudo

code” function. It helped us translate the assembly code

into a more legible language. IDA also makes finding

address locations easy by making cross-references such as

sub-routine calls accessible with a simple click.

A. Dynamic-Link Library

Dynamic-Link Library (DLL) files are

Microsoft’s implementation of a shared library. A DLL

file contains functions which can be loaded by programs at

run time. The functions which were critical in reverse

engineering the Microsoft proprietary codecs (x-msrta, x-

rtvc1) resided in the rtmpltfm.dll (Real-Time

Communication Platform)[6]. From this knowledge, it was

decided that the best course of action was to analyze the

DLL to obtain the function names or addresses of the

relevant functions. If the decoding and encoding functions

were made transparent, the functions could be used to

replay the audio data sent between WLM clients.

After performing an initial investigation of the

DLL file, it was discovered that many functions were

privately exported. Because of this, the function names

were not available for linking in the normal

manner. However, by searching for the defined string “x-

msrta”, a slot in memory was found. This memory slot

was referenced by two words worth of memory. No cross-

references by functions were called to this point in

memory, but by analyzing the defined memory

surrounding the x-msrta section, we noticed the labels

SIREN, g723, wma9, wma8, PCMU, and many

more. These labels all happened to be WLM voice chat

codec names. At the top of the section was an offset

section of memory that was cross-referenced by another

function. This proved that these codecs made up an array

of strings. After further analysis of the cross-references

we were able to determine that the function in the shared

library would determine which payload was used to

encode the audio and then fetch the payload codec

information and sample rate.

B. Replay Attack

A replay attack was tested on WLM. We planned to send

the data sniffed in packet form from one of our computers

to another, using the WLM connection setup

methods. We decided to try this method since it seemed

more feasible than manually extracting the codec. The

client receiving the data would decode it for us and

convert it to audio so we could listen. Essentially, we had

to analyze packets sent and received to generate our own

packets, using the correct data necessary to initiate a SIP

session. Most of the data could be found in advance, such

as port number, IP address, and e-mail address. There was

one parameter within the SIP authentication which was

unique with every session. This was the “epid” value,

which is a unique session ID in a SIP conversation. It is

based off of the e-mail address of the sender, but the

methodology in how the “epid” is developed is proprietary

to Microsoft. This parameter is an additional security

measure optional to SIP sessions that is active in all

Microsoft voice communication systems. Without the

value, an error: “žSIP/2.0 400 Mismatched epid
parameter value would appear. We decided this method
would not work, since we had no means of breaking this
proprietary protocol with no knowledge of in which DLL it
was created in.

C. Video Chat

Using the same idea, we captured packets of

video streams sent between two users having a video

conversation. We again decoded and analyzed the SIP

message at the initiation of the video chat. Two types of

information were retained from this analysis: the packet

type and the video codec. The video conversation for

WLM uses the RTP type-121 protocol. As mentioned

earlier, RTP is a real-time transfer protocol used for many

media streaming and VoIP services. After further analysis

of these RTP type-121 packets, we were able to determine

that the codec used for the video conversation was the x-

rtvc1 codec (RTVideo, Microft Proprietary Codec) [6].

Now, to analyze the packets captured, we had Wireshark

decode the UDP packets as RTP. Next, we saved the

payload and converted to a VC-1 media file. The reason

we converted to a VC-1 file was suggested from the codec

name itself that x-rtvc1 could be an extension of the

widely available VC-1 codec. After further research, we

were able to confirm that x-rtvc1 was indeed an extension

of the VC-1 codec.

 Now that we had the media file, we wanted to see

the content. We tried many commercial media players

including Windows Media Player, VLC Player, and

SMPlayer.

V. RESULTS

A. Video Chat

In analyzing the RTP streams of a video

conversation, we were able to translate the data sent back

and forth into a playable video file. Upon using ffplay, a

Linux-based media player, we were able to see some

frames of the video. After further analysis, we noticed that

editing the payload data before each packet would result in

a more complete video stream.

Figure 1 Decoded Video File of a Video Conversation

B. Voice Chat

 As for audio, we were able to discover the

function within the shared library that used the specific

codec x-msrta we were looking for. However, due to

inexperience with program disassembly, we were unable

to find the correct function parameters and work with the

function in a programmed C code of our

own. Theoretically, the Windows API supports loading

shared libraries into C codes and calling the DLL function

from a code. The functions were made for use with

streaming audio, where the client would read a multitude

of packets and the shared library function would determine

the rate the packets were coming in. With this information,

the function could calculate the frame rate of the audio and

sampling rate.

VI. DISCUSSION

The analysis of WLM confirms that video and

audio conversations are in fact replay-able. Due to this, the

privacy of video conversations between WLM users are at

risk from attackers. If users are unaware of the lack of

security present in WLM, then they may share private

information which could be intercepted by a third party.

Even if the users are aware of the lack of security, and

information discussed throughout the conversation may

not be critically sensitive, many individuals would prefer

to have their privacy.

WLM has violated the open-design principle in

secure system design. By keeping the codecs and the

system proprietary, other users have no option of adding

on to the system to make it more secure. There is little or

almost no extension made for WLM as a result of its

proprietary system. If outside developers were allowed to

work on the software, there could be a solution for its

insecure chat features. As we noted earlier, WLM lacks

confidentiality for its users by having unencrypted packets

of text-based, audio and video conversations between its

end users. This empowers attackers to read sensitive data

and the users are susceptible to identity theft, which could

lead to many more social engineering problems. A

potential solution to increase security could be to encrypt

data sent between WLM clients so that attackers would

not be able to replay the video or audio even if they had

access to the codec. This would deter attackers from

attempting to intercept and replay conversations, as there

is an additional level of difficulty.

 Throughout the course of the analysis, it was seen

that progress was greatly hindered due to a lack of

experience with the tools that were used (IDA, Assembly,

gstreamer). These tools each possess their own learning

curve which slowed progress as time was required to

familiarize with the tool. As such, attempts at analysis and

reverse engineering were less detailed and thorough than

they could have been.

VII. CONCLUSION

 The main purpose of our analysis of WLM was to

prove that voice and video chat are unsafe features on an

insecure network. We were able to prove this by finding

the source of the audio encoding and displaying a portion

of the video conversation. Insecure network packet

sniffing is an incredibly easy-to-do task with a program

such as Wireshark. This supports our final analysis

defining WLM as insecure. The problem with the security

of WLM is that since it is intercept-able, it produces the

concerns that come with telephones and wire-

tapping. Even though WLM is a free service, it is a

widespread communication tool so users should be

informed of the possibility of privacy breaches. Microsoft

makes no effort to inform the program’s users about this

problem. Many users are naive in thinking the service is

perfect and are unaware that whatever they are saying to

their contacts is heard. No system is perfect, but WLM

could potentially make it harder for sniffers to perceive

what information is passed through the

service. Encryption to the packet data would definitely

make breaking the system a much more tedious and

difficult task.

REFERENCES

[1] The Windows Live Messenger Team. (June 15,

2009). Share your favorite personal Windows Live

Messenger story with the world! Available:

http://messengersays.spaces.live.com/Blog/cns!5B4

10F7FD930829E!73591.entry

[2] O. Zheng and J. Poon, “Security Analysis of

Microsoft Notification Protocol”, unpublished.

[3] M. Ward (2005, October 31) Warcraft game maker

in spying row. BBC News. Available:

http://news.bbc.co.uk/2/hi/technology/4385050.stm

[4] MDSN Library. Representing New Payload Types.

Available:

 http://msdn.microsoft.com/en-

us/library/dd949621(office.12).aspx

[5] Y. Alaoui, aMSN Project Manager, online

communication, November 2010

[6] MSDN Library. (June 2002). Integrating Rich

Client Communications with the Microsoft Real-

Time Communications API.

 http://msdn.microsoft.com/en-

us/library/ms997607.aspx

http://messengersays.spaces.live.com/Blog/cns!5B410F7FD930829E!73591.entry
http://messengersays.spaces.live.com/Blog/cns!5B410F7FD930829E!73591.entry
http://news.bbc.co.uk/2/hi/technology/4385050.stm
http://msdn.microsoft.com/en-us/library/dd949621(office.12).aspx
http://msdn.microsoft.com/en-us/library/dd949621(office.12).aspx
http://msdn.microsoft.com/en-us/library/ms997607.aspx
http://msdn.microsoft.com/en-us/library/ms997607.aspx

