
CPEN 442 Term Project Report

1

Abstract—We are currently analyzing the security of a web
application owned by Rallyteam. As Rallyteam’s web application
contains confidential information, its security is important in
protecting Rallyteam’s clients and stakeholders. To carry out a
systematic evaluation of Rallyteam’s vulnerabilities, we will
follow OWASP penetration testing methodologies. We will then
present our findings to Rallyteam and make recommendations
that can mitigate discovered vulnerabilities.

I. INTRODUCTION

allyteam is a startup that has created a web platform for
users to simplify professional networking, employee

development, as well as workforce and community
management. Rallyteam emphasizes connecting people with
varied skillsets and providing a user-friendly and professional
interface for them to collaborate on projects. At first glance,
the website appears polished. Rallyteam’s developers have
also conducted security analyses themselves to uncover
security issues. However, as a startup, oftentimes shortcuts are
taken in the code to develop essential features at a fast pace.
Thus, some security measures may have been overlooked or
ignored. To protect Rallyteam’s clients’ sensitive information
and to protect Rallyteam from legal risks, security flaws
should be rectified. This report will reveal some of
Rallyteam’s security holes and provide recommendations with
respect to our findings.
 Our team follows the OWASP testing methodology to
carry out a systematic analysis of Rallyteam’s web application.
We began by investigating Rallyteam’s logic and flow using a
proxy that lies between the web browser and the actual server.
With this setup, we were able to learn more about the HTTP
requests and responses, the logic behind the web application,
and access points / gates such as headers, parameters, and
cookies. Also in this initial phase, we crafted a variety of
queries to Rallyteam’s server. Doing so allowed us to observe

whether the client can find any information that only the server
should be able to see or allow the client to make changes to the
web application that he or she is should not have access to.
In our second phase, we will actively search and gather
information to expose the flaws that we have discovered
during our initial inspection of Rallyteam. We will perform
testing in specific categories. These include authentication,
authorization, session management, input validation, error
handling, cryptography, and client-side testing. Through this
security analysis, Rallyteam will be able gain perspective on
the security holes in its application and consider mitigations to
these vulnerabilities.

II. ANALYZED SYSTEM
 Rallyteam’s target customers are companies and their
employees. They offer a cloud web platform (SaaS) for the
employees to connect and create groups and projects. Each
company is given its own Rallyteam domain. For example, our
penetration testing Rallyteam domain is http://pentest-
cpen442.rallyteam.com and our CPEN 442 Rallyteam domain
is http://cpen442-ubc.rallyteam.com. Within each domain,
employees can sign up or be invited for personal accounts. In
other words, domains do not share Rallyteam accounts, and the
same person would need separate accounts on separate
domains. Knowing this, we can infer that the two domains are
separate in the databases. A data leak within one domain
would not affect the other, although the vulnerability that
exposed the data leak would also be present in other domains.
 On Rallyteam’s platform, users can share their
interests, skills, and other information on their public profiles.
Other users are able to see what skills and interests another
employee has. They can create groups, projects and events
which allow others with similar interests and skills to connect
and share ideas on Rallyteam’s platform.
 On the technical side, Rallyteam is built on top of
Microsoft’s Windows Azure system. It uses Bootstrap and

Security Analysis of Rallyteam

 December 11, 2016

Emmett Tan (37087129), Harris Lin (32007122), Irene Chen (51068096), Kaibo Ma (32400129)

Group #2

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, Canada

UBCEmmettTan@gmail.com
karu.irene@gmail.com
kaiboma@gmail.com

harrislin94@gmail.com

R

mailto:UBCEmmettTan@gmail.com
mailto:karu.irene@gmail.com
mailto:kaiboma@gmail.com
mailto:harrislin94@gmail.com

CPEN 442 Term Project Report

2

AngularJS on the frontend to provide the users with an
aesthetic and smooth interface. On the backend, Rallyteam
uses Web API. Since Web API is written in C#, which is a safe
language, buffer overflow attacks will be ineffective. Service
endpoints include opportunities, tags, users, groups, events,
count, files, and track. Information sent from the client side to
the server side is through the HTTP requests and responses.
From our first phase of learning about Rallyteam’s logic, we
found that some requests are encrypted, but responses are
generally not encrypted.
 On the backend, data are stored in Microsoft SQL and
Azure blobs. It is worth noting that SQL injection attacks do
not work on Microsoft SQL. Strings are sanitized before being
saved into the database. For example, one cannot store raw
hyperlink strings. Rather, the web application will change it to
another format. For example, if the input string is
“https://www.youtube.com/watch?v=SkXxKnboE0M”, then
this string will be sanitized and parsed to become something
like “SkXxKnboE0M” when it is stored into the database.
 Azure’s Web role is responsible for servicing HTTP
requests. Google analytics is used for front-end telemetry,
while Visual Studio App Insights is used for backend
telemetry.
 On the application layer, HTTPS is used. SendGrid is
used to manage and send emails on Rallyteam’s platform.
Users are able to create an account using an email or sign up
through a Google or Microsoft Outlook account. In-house
accounts are authenticated by Rallyteam, whereas Google and
Outlook accounts are managed through auth0.

III. RELATED WORK
 Rallyteam has previously undergone penetration tests
according to our advisor, Ildar Muslukhov. Muslukhov has
stated that in the previous test, many vulnerabilities were
discovered throughout the system. One of the major flaws was
the site’s vulnerability to a cross-site request. Not all of the
known security flaws in the system have been fixed.
 Similar companies have been victim to rogue
penetration testing. For example, Slack, another web
application that creates domains for groups to collaborate
ideas and knowledge had its security compromised in February
2014. Usernames, email addresses, registration details, and
passwords worth up to $2 billion USD were stolen from a
database due to an unauthorized access to a Slack database
storing user profile information. These passwords and user
data were salted and hashed using bcrypt. However due to the
extent of this leak, the stolen data can be decrypted. After
investigation into the breach, Slack implemented two-factor
authentication and password kill switches to prevent attacks
like this in the future. We may want to consider Slack’s
security policies in evaluating Rallyteam’s security. It is
important to be diligent with penetration testing. All it takes is
for one company to leak out user passwords. These passwords
can then be used to match other accounts from different
companies. For example, stolen user information and
passwords can be used to hack into user accounts across other
sites such as Netflix, Google and Amazon. Users that reuse

user identification and password combos are most at risk. This
is why performing a penetration test and analysis of Rallyteam
is important. All companies should always take the butterfly
effect into consideration and look at the possible harm that
could propagate from one small data leak.

IV. ANALYSIS METHODOLOGY

System Analysis
 Our main tools for evaluating Rallyteam’s security are
browser debuggers and proxies. Through browser debuggers
like Mozilla Firefox and Google Chrome Developer Tools, we
are able to view Rallyteam’s client side code. Furthermore, we
can send HTTP requests directly from the browser debuggers.
By sending some legitimate requests, we familiarized
ourselves with how the requests are constructed. Then, with
proxies, we proceeded to make requests in the same format
and inject modifications in order to execute actions that are
outside of our permissions.
 By familiarizing ourselves with the client side code and
constructing properly formed HTTP requests, we have
discovered that although there seems to be plenty of client-side
validation, the same is not true for the server side. For
example, when creating groups, the text field for group name
is limited to 200 characters, but by sending a POST request to
the groups API directly (not through the web interface), we
can create a group whose name exceeds 200 characters.
 By intercepting and changing the parameters of
intercepted requests, we have also discovered that we can
change the fields of client requests successfully. Again going
back to the groups API, we found that we can change the
privacy setting, moderator, name of the group, among many
other fields..

Ethical Considerations
 As aforementioned, Rallyteam has provided us with a
domain for our security analysis. Thus, we are able to conduct
attacks on the web application without harmful effects on
Rallyteam’s existing clients. Furthermore, we will keep
Rallyteam’s security flaws confidential so that attackers will
not be able to exploit flaws due to our analysis.

Risk Management
 Our security evaluation of Rallyteam has been explicitly
authorized by Rallyteam’s Chief Technology Officer.
Furthermore, we have Rallyteam’s full support in pursuing this
security analysis, as demonstrated by their willingness in
providing us with a domain intended for penetration testing.
As Rallyteam is still in its initial stages of development, there
is not a large risk yet posed to stakeholders, as the client base
is still small.

V. FAILED ATTACKS

Intercepting and Modifying HTTP Requests and Responses
We attempted to sniff the HTTP requests and responses to

Rallyteam’s server. However, Rallyteam’s HTTP requests and
responses appear to be secure, as it employs Secure Sockets
Layer (SSL) and HTTPS for networking. As a result, even

CPEN 442 Term Project Report

3

though confidential information such as email addresses and
passwords are sent in plaintext, the information should be safe
from a snooping third-party. Such an attack should only be
plausible if an attacker creates a fake certificate and public
key, and the human user to chooses to ignore the browser
warning regarding the untrusted certificate.

Bypassing the Client-side Data Validation
We attempted to bypass certain data validation rules

enforced by Rallyteam’s web application client by sending
HTTP requests directly to the server. However, we found that
Rallyteam employs server-side validation in addition to client-
side validation. For example, group names are limited to 200
characters, and the web client does not allow the user to
submit the form should the user input for group name exceed
200 characters. When bypassing the web client and sending
the request directly to the server, an exception is thrown if the
group name exceeds 200 characters.

Server response from receiving a POST request to the groups
endpoint with a group name longer than 200 characters

Cross-site Scripting
Rallyteam appears to be relatively safe to cross-site scripting
attacks. We have attempted to inject JavaScript and HTML
through functionalities such as comments, chat, discussion, to
no avail.
We tried several types of strings to see if we could bypass
Rallyteam’s string sanitization. The first type of string that we
tried was “<script type='text/javascript'>alert('xss');</script>”.
Rallyteam defends against this attack by replacing forward
slashes with “~2F”.

Example of sanitized user input.

VI. VULNERABILITIES DISCOVERED

Disclosure of Confidential Information
 Unauthorized users are able to view the projects, events, and
files of private groups by sending a properly formed request
with the ID of the private group. Unauthorized users may even
download the files of private groups with the corresponding
blob URL.

Here, we are editing the group ID to a group that we do not

have access to

CPEN 442 Term Project Report

4

Retrieving the content URL from the response

Users can also view files associated to a group even when the
group is deleted. For example, consider a legitimate user who
creates a private group for himself for temporary storage of
personal information. He stores sensitive information that
should only be viewable to himself and should be destroyed
once the purpose is over. He then deletes the group after it has
fulfilled its purpose. Files associated with the group should be
deleted along with the group. However, another user is able to
guess the ID of the deleted group, then using the previous
method, that other user can access files associated to that
deleted private group.

VII. DISCUSSION OF THE RESULTS

Adversary Models
The objective of the adversary who exploits Rallyteam’s
disclosure of confidential information is to view information
that the user does not have access to. The adversary’s initial
capabilities include the ability to send HTTP requests as an
external user. They have access to API Endpoints and can edit
and resend requests simply on a browser develper tools. ID’s
for group and projects are numbered in order of creation i.e.
first group made is ID 1 and second group made is id 2 and so
on. The attacker may find the ID’s of private projects or
groups by simply by guessing numbers in order or looking at
the public groups that she is authorized for then deducing the
ID’s of the private groups. For example, if the attacker can see
groups 1 through 10 as well as 12, she would know that group
11 was either deleted or private. The adversary’s capabilities
during the attack include the ability to obtain private files and
information.

Violations of the Principles of Designing Secure Systems

Complete Mediation:

According to the principle of complete mediation, “Every
access to every object must be checked for authority.” For
RallyTeam, it means that it should constantly check
authorization of a user at all steps. No validation is done
when the api GET requests for project and group files are
sent to the server. External users are able to access files
from projects that they do not have access to. This violates
the principle of complete mediation.

Defense in Depth:

Rallyteam’s lack of authorization check for the file endpoint
demonstrates that they assume users will not directly send
requests to the file endpoint for groups and projects in
which they are not authorized because no graphical user
interface exists for them to do so. Thus, no authorization
check was implemented for access to the files endpoint,
since it is implicitly assumed that authorization was
checked by the projects and groups endpoints.

Psychological Acceptability:

The user interface for inviting users has client-side validation
to check for invalid or malicious input. However, it is not
clear whether users should separate the emails by
punctuation, spaces, or something else, which can lead to
much frustration when users try to send invites. Rallyteam
should not make the validation process harder for the user
to use the web application.

VIII. RECOMMENDATIONS
We recommend that Rallyteam always check the authorization
of the user on the server-side to avoid disclosing confidential
information. Their API endpoint to retrieve file data should be
consistent with checking for authorization. Rallyteam should
assume that attackers can send queries directly to the server,
and should not assume that they need only to check for
authorization when there is a graphical user interface that
allows users to make certain types of requests. Furthermore,
we recommend that Rallyteam check for authorization as one
of the first steps upon receiving a request. Thus, this
authorization check should be done in its Web API controllers.
More specifically, the the specific classes that inherit from the
ApiController class should call the functions that execute
authorization checks.

We also recommend Rallyteam make the user-interface more
user-friendly, especially in cases of input validation. For
example, for the user interface where administrators are
inviting users by email, rather than refusing to submit the form
if the administrator does not separate emails with commas,
allow administrators to separate emails with spaces too.
Another option is to add instructions in the invitation user
interface stating that commas are required to separate the

CPEN 442 Term Project Report

5

emails or even provide a screenshot example on the correct
way.

IX. CONCLUSION
Rallyteam has a number of security measures currently in
place. These measures include include SSL, HTTPS, input
sanitization, and server-side validation, among others.
However, we have discovered that Rallyteam is not thorough
in checking the access rights of client, leading to data leaks
and violating the principles of complete mediation and defense
in depth. Furthermore, having a secure system is more than
implementing security protocols and algorithms. Rallyteam
should also consider the psychological acceptability of its
security features. In light of these principles of designing
secure systems, we recommend that (1) Rallyteam complete a
thorough check of all its API endpoints to ensure that all
requests are checked for access permissions, and (2) Rallyteam
improve the user interface for accepting user input.

APPENDIX A. PROJECT CODE OF CONDUCT
Throughout the project, our team has ensured that we keep the
information regarding Rallyteam’s security flaws and
technology infrastructure confidential. In anticipation of the
potential negative consequences from our actions, such as our
classmates using our findings to exploit Rallyteam, we will use
discretion in presenting these flaws to the class. In addition, we
have avoided negatively impacting the experience of our
team’s classmates by conducting penetration testing on a
domain separate from our classmates’.

APPENDIX B. RESPONSIBLE DISCLOSURE
 Our contact from Rallyteam is Ildar Muslukhov
(ildar.muslukhov@rallyteam.com; 778-707-1073). We will
meet with him on November 28th after our lab in MacLeod
228 to discuss our final findings.
 Any vulnerabilities discovered during our security Analysis
on Rallyteam will be documented along with the steps
necessary to reproduce the vulnerabilities. It will be a
continuous integration with our analysis method. We will
constantly provide feedback to Rallyteam with all security
issues we may come upon. We will then provide an estimate of
the potential severity for each security issue. The timeline for
disclosure depends on the severity of the vulnerability but may
proceed as follows:

Minor Security Flaws
These are security flaws that do not have large repercussions.
For example, it does not leak out personal vital user
information, but may allow you to view private groups with
unauthorized requests. These vulnerabilities will be tracked
and eventually revealed to Ildar Muslukhov during our full
report.

Major Security Flaws
Any vulnerability that places user information at risk needs to
be addressed immediately. It could potentially spread to other
services like in the example of Slack where stolen user data
was used on other services like Amazon and Netflix to steal

more information. Zero-day vulnerabilities can be catastrophic
if not fixed. We will immediately disclose this information to
Ildar Muslukhov through phone and email.

X. REFERENCES
[1] Anderson, Ross. Security Engineering -- A Guide to
Building Dependable Distributed Systems. John Wiley &
Sons, 2008, Second Edition.

[2] Fay, John. Contemporary Security Management.
Burlington, MA: Butterworth-Heinemann, 2011. Print.

[3] Grossman, Jeremiah. XSS Attacks : Cross-site Scripting
Exploits and Defense. Burlington, Mass: Syngress, 2007.
Print.

[4] Mayhew, Bruce, Nanne Baars, and Jason White.
"Category:OWASP WebGoat Project." Category:OWASP
WebGoat Project - OWASP. OWASP, n.d. Web. 16 Nov.
2016.

[5] Mark Stamp, Information Security : Principles and
Practice, Second Edition, Wiley-Interscience, 2011. Print.

[6] Pernul, Günther. Computer Security – ESORICS 2015
20th European Symposium on Research in Computer Security,
Vienna, Austria, September 21–25, 2015, Proceedings, Part I.
Springer International Publishing, 2015. Web. 11 Dec. 2016.

mailto:ildar.muslukhov@rallyteam.com

