
Analysis of Android Applications

Andrew Lam (32782120), Caleb Kwan (92859115), James Tu (10798122), and Saurabh Vishwakarma (55898126)
Department of Computer and Electrical Engineering

University of British Columbia
Vancouver, British Columbia

andrew8b2@gmail.com, caleb.kl.kwan@gmail.com, jat2872@gmail.com, svishwak4@gmail.com

Abstract—The Androlyzer is a tool that uses static analysis

to detect security flaws as well as dependency issues in Android

applications. We conducted surveys to compare this tool with

other tools which were currently available on the market, and

found that our tool was significantly easier to use and understand.

I. INTRODUCTION

The complexity of analyzing software projects is one of the
major causes of inefficiency during development and testing.
Larger programs, added features, and changing requirements
usually leads to higher complexity and often with a large
number of dependencies. The increased complexity can make
it difficult for application developers to understand how var-
ious files and code segments work in relation to each other.
It also becomes more difficult to predict the implications of
modifying the codebase. While many interactive development
environments (IDE) and standard development kits (SDKs)
have built in error detection feature, some of these errors
remain in the final product.

We intended to solve this problem through the use of
software visualization, the presentation of information about a
software system through static, interactive, or animated 2D/3D
representations of their structure, execution, behavior, and/or
evolution[10]. Since software projects encompass a very large
scope, so we decided to focus on only Android applications.
The backbone for Android programs is Java, and both this
programming language and the Android framework have been
developed, used, and tested thoroughly over the past decade.
As Android users currently make up over 75% of the worlds
smartphone users[3][7], it is important that developers are able
to properly see and fix any vulnerabilities that may be found
during the development and testing phases of their projects.
The objective for our design project, the Androlyzer, was to
construct a program that would analyze compiled software
code, and graphically highlight areas of possible bugs and
security vulnerabilities. Our program would have as its goal
to increase usability and readability of security analysis tools
and therefore improve productivity.

The Androlyzer begins by parsing the Android Application
Package (APK file). An Android APK is the standard format
used to distribute and install mobile android applications and
middleware. Essentially a type of archive file based on a
zip format called Jar, it is used as a container to aggregate
all the Java class files of an application for distribution.

The Androlyzer contains three third party applications and a
javascript visualizer. The first application is called Dex2Jar,
used to convert the apk in jar format. Once converted into
a file with the extension .jar, we will analyze the files for
both bugs and dependency issues and then feed this output
into a Javascript visualizer to be displayed in a web browser
for user to view. Bug analysis was done by FindBugs, while
dependencies were checked with DependencyCheck.

Related programs to detect vulnerabilities in Android appli-
cations already exist, such as the University of Washingtons
SPARTA project and Lins AndroBugs project. However, these
programs were either difficult and cumbersome to setup or
lacked visualization features as with AndroBugs. The key idea
for our design was to draw on pre-existing methodologies
for representing code and issues more visually and applying
them to identify security vulnerabilities within a APK. We also
drew on the concept of visual learning, used stylized lists, and
addressed common readability of issues found in program code
so users have an easier time understanding a bug reports.

The methodology for evaluating our design was based on
evaluating the usability of an analysis program and the read-
ability of the output bug reports. The results of the evaluation
are based on a survey of two groups of people. One group
used the Androlyzer to view any bugs and dependencies of
a particular selected APK. The other group using FindBugs
and DependencyCheck with no additional visualization. The
survey results were pooled and compared between the two
groups to determine if results of the Androlyzer improved
comprehension of vulnerabilities within Android applications.

II. RELATED WORKS

Existing works for identifying program security flaws and
malware exist, but there were not many that fit the goals
that we had when creating our project. The SPARTA project,
or Static Program Analysis for Reliable Trust Apps, is a
program that was created to build a toolset that aimed at
verifying security of mobile phone applications. SPARTA was
proposed as a verification model for use in such app stores
to guarantee that the apps are free of malicious information
flows[8]. They provide tools in type-checking, allowing the
user to specify a security property, annotate the source code
with type qualifiers. However, this program did not have the
visualization properties and the specific annotations and large
documentation made it difficult for new users to learn and use.



AndroBugs is a Android vulnerability analysis system
aimed at helping developers find potential security vulnera-
bilities in Android systems. Created by Yu-Cheung Lin, it had
an interface that was command line based. Features for this
framework included finding security vulnerabilities, checking
if code was up to best practices, checking for dangerous com-
mands, and checking an applications security protection[1].
Instructions were included for both Windows and Linux, but
like SPARTA this work did not contain the visualization for
the results. The report was displayed in the console of the
terminal, which means the user often had to read through large
amounts of text to identify security issues.

Many others have created toolsets with goals of improving
security in mobile Android applications. A team led by Will
Klieber created tools to address the issues of leakage of
sensitive information from a sensitive source and another to
address activity hijacking. Using the concept of information
flow, they sought to address integrity concerns such that
highly sensitive information does not flow to a place not
authorized to receive the data. Activity hijacking occurs when
a malicious app receives a message intended for another app.
This can occur when a malicious app uses a confusing name
that tricks the device into sending the message to someplace
else. Kleibers et al created a second tool to help find the
likely violation of secure coding rules in order to reduce
the amount of activity hijacking[9]. There has been a lot of
research, both past and ongoing, on static analysis for Android
applications[6], but very few have the visualization properties
we hoped to address with our project.

III. ADVERSARY MODEL

Software security levels are relative to the powers of an
adversary trying to compromise a system. When building
security systems, the security level and competitiveness are
usually compared against an adversary model. The specific
adversary model for testing will depend on the what the
system is designed to resist against. According to Wikipedia,
there three common adversaries. The oblivious adversary is the
weak adversary; they know the algorithm and code but do not
know how to get the randomized results of the algorithm. The
adaptive online adversary is the medium adversary who must
make its own decision before it is allowed to know the decision
of the algorithm. Finally, the adaptive offline adversary is the
strong adversary who knows everything. Randomization does
not help against it because they also know the random number
generator.

For our system, the objectives of an adversary may include:
• Acquiring traffic information when users use an Android

application
• Changing the app from trial (reduced-feature) mode to a

full-featured version, causing the app developer to lose
revenue [4]

• Relabelling the app to pass it off as their own [5]
• Extracting personal (user data) or proprietary information

(API keys, security certificates) [5]

The initial capabilities of our adversary may include access to
a copy of the APK and access to reverse engineering tools to
decompile and view the files of the APK. With the ability
to view source code, the adversary would be able to alter
code segments and functionality that could negatively affect
the usage of the app either against consumers or the developers
themselves. During an attack, the capabilities include the
ability to eavesdrop on wireless communication of someone
else running that app, and possibly the temporary physical
access to a users Android device if the app did not store data
securely.

Based on these objectives and capabilities, our system is
built to resist against a medium adaptive adversary. This
adversary is able to view source code of an apk and exploit
possible vulnerabilities to allow them to access or abstraction
of private data, use the app for their own means, or perform
other actions that may affect others. With our system, we
have been able to detect these vulnerabilities ahead of time
and provide fixes to ensure they did not make it to the final
product, thus limiting the strength of the adversary.

IV. SYSTEM DESIGN

Android applications are packaged into a file the Android
Application Package (APK) extension. As discussed earlier,
it contains Java classes from the source code (compiled in
a Dalvik Executable, or dex format) and resource files for
the application. In order to analyze the files within the APK,
we needed to convert the files to the proper format. Methods
include changing the extension to a zip file and extracting
the contents, or converting the APK to a jar format. Once
converted to jar format, the jar file was used as an input for
analysis. The output was an xml file that was read by a jquery
script to parse and display the results in a readable format
within a web browser.

Our design began by selecting a suitable program for
converting APK files into jar. Dex2Jar was a simple command
line interface program that suited our needs, taking either APK
or dex files and converting them into jar files. For detecting
security bugs and vulnerabilities in source code, we decided
to go with FindBugs as they had an extensive library of
documented issues and testing done since the time the project
started. FindBugs is still being maintained, with the last update
in October 2016. For checking dependencies within the apk,
we went with OWASP Dependency Checker for its multiple
support libraries. All three programs were also selected due to
them each having a command line interface, as we decided to
use bash scripts to integrate the three third party applications
together. Therefore, the user would only need to one run script
that would produce results for both security bugs and program
dependencies. A general workflow of our system can be seen
in Figure 1 of the Appendix.

The design decisions made were meant to help developers
keep in mind several principles of designing secure systems.
These principles included the questioning of assumptions, as
analysis of imported libraries implies the user is does not
assume that these libraries are secure; defense in depth as the



application was analyzed from imported libraries up to written
source code that used the libraries, which helps to enforce
the need to have multiple layers of security; and open design
as the visualization shows users that vulnerabilities remain
exploitable even if the users attempt to hide them.

V. SYSTEM PROTOTYPE

Our system consists of three third party applications tied
together with a bash script: Dex2Jar-2.0, FindBugs-v3.0.1, and
OWASP DependencyCheck. The final step and component was
the visualization with the jquery script that read the xml output
and displayed in a web browser for viewing. Firefox will be
used as the default viewing browser.

Dex2Jar was a program created to work with android apk,
dex, and java class files. While documentation for this project
is limited, but the main goal is the conversion of the files
in apk format into android .class files (zipped as jar). Use
of Dex2Jar was simple; once extracted to a location the user
simply needed to run ”sh dex2jar.sh [nameofapk.apk]” using
the command line interface.

The program created as output a jar file named nameofapk-
dex2jar.jar in the root directory of Dex2Jar.

FindBugs was a program created for security audits of Java
web applications. It is an extensively tested plugin created for
multiple platforms, including popular IDEs such as Eclipse and
IntelliJ/Android Studio. It can detect 93 different vulnerability
types with over 200 unique signatures, and includes multiple
supports for Android frameworks and libraries[2]. It is an
open source project that is still currently being updated.
FindBugs was used to check for any type of security bugs
and vulnerabilities that occurred.

The purpose of OWASPs DependencyCheck is to take
advantage of the existing bug database compiled by the
OWASP Foundation to check if imported libraries have known
security flaws. The most important portion of this tool is the
database of known bugs which is used by several known cyber
security government agencies around the world, including
Canadian Cyber Incident Response Centre and Center for
Internet Security (CIS) in USA. The tool takes a jar file and
scans for any dependencies.

Our project integrated all three third party applications
by using multiple bash scripts written for Linux/Mac OSX.
Separate bash scripts were first created for the Dependency-
Check and FindBugs programs. One main bash script was
then created that called each of those independently so that
only one command was needed to start the entire program. At
each step, the necessary xml output files were moved into a
common folder. A javascript jquery parsing script was called
by a python script at the end in order to format and display
the results in the FireFox browser. A capture of the results
displayed in the browser for Bugs and Dependencies are shown
in Figure 2 and Figure 3 of the Appendix, respectively.

The idea of stylized lists was used as we felt that users have
an easier time reading information organized into blocks. The
color coding was also created in order for users to quickly
identify which issues were of higher priority. Information

about functions and where the specific vulnerability can be
found within the Java files are also provided so the user was
able to quickly search up and navigate to that particular area in
the source code. Since the xml files are saved into a specified
output folder, the user was also able to close the browser and
reopen it for later use.

VI. SYSTEM EVALUATION

Evaluation Methodology

The evaluation of our system was based on a survey,
refer to Figure 5 of the Appendix, of ten different people
split into two groups. One group would attempt to view
bugs and dependencies while using the Androlyzer, while the
other were tasked with using the native programs separated.
Each individual was chosen based on their experience and
knowledge with computer science, but otherwise had little
to no experience with the types of tools described earlier.
The individuals were placed into the two groups (A and B)
randomly.

For members of group A, they were instructed to attempt to
install OWASP DependencyCheck and Findbugs and analyze
a simple android application for security flaws and dependen-
cies. The subject was required to answer a set of questions
while doing the analysis pertaining to their experience in using
the programs and locating these vulnerabilities within the code.
Group B used the Androlyzer, and like Group A were asked
to report on their experience in looking for the vulnerabilities
within the source code running the system.

Results of the Evaluation

The evaluation of the Androlyzer compared to the original
tools showed an improvement in the ease of installation and
usability, refer to Figure 4 of the Appendix. The averaged
responses showed that subjects found that the Androlyzer
performed better than the original tools in terms of usability
and readability.

Subjects from group A reported that using Dependency-
Check and FindBugs was difficult due to lack of understanding
of the console inputs in the tools documentation. Group A also
reported that the resulting output xml output from FindBugs
was difficult to follow citing difficulty tracking tags and end
tags. All members of group A reported that they would not
use this on a regular basis and rated the overall experience
below five.

Subjects from group B found that the installation and use
of the Androlyzer was generally easy and reported no issues.
Three subjects reported that the colors used to differentiate
severity of bugs could have been more distinct than multiple
shades of red. Another issue was that some users did not
realize that there were toggle buttons at the top to show either
dependency vulnerabilities or source code vulnerabilities and
were later informed that there were additional bugs hidden
by the toggle. In general subjects found the collapsible bug
descriptions useful for focussing on specific bugs.

Subjects from both groups reported that running the scripts
took a very long time. This is attributed to DependencyCheck



downloading the most updated catalog of known bugs. The
tool will run faster for subsequent analysis as Dependency-
Check will not have to redownload the catalog. As a result
time was no longer taken into consideration as this was mostly
dependent on the subjects internet download speed.

Discussion of the Results

The results shows that in terms of usability, the Androlyzer
is an improvement. Several issues with the design of the
Androlyzer were mentioned by group B, however these issues
can be addressed easily. However the results of this survey
may be flawed as the sample size of the survey is far too
small to be representative of the Android user and developer
base. Another issue with this survey was that it was conducted
on people who the members of this group have prior relations
with. Hence there is an inherent bias associated when asking a
colleague to be surveyed while using a program. The influence
of both of these issues could not be addressed adequately due
to the time constraints for this project.

VII. DISCUSSION

The Androlyzer makes existing tools more usable which is
the motivation for the project. The GUI for the Androlyzer
was finalized to a set of blocks and text elements as we felt
that our original design of mapping out the code structure of
an APK would prevent the user from understanding where
vulnerabilities lie. We realized that rather than displaying a
map of the entire code base, it would be better to show the bare
minimum required to identify and locate a security bug and
allow for the option to expand a block for further information.

With regards to our adversary model, we believe that the
Androlyzer is a good starting point for the analysis of APKs as
each patched bug reduces the likelihood of a security breach,
however the Androlyzer is inherently limited and provides no
further analysis than the tools it uses.

Our design benefits by making it easy to include more tools
which use console commands. As a result, existing work such
as AndroBugs, can be included for a more generalized bug
checking tool. The Androlyzer could also be expanded to
include other languages such as C or Python as long as the
tools have command line interfaces. However the Androlyzer
is limited to mostly text-based tools and cannot interface
with tools that only have a GUI version available. Another
limitation that the Androlyzer currently faces is the inability to
specify specific flags for the individual tools. This limitation
can be fixed by editing the scripts directly to suit the users
needs however this reduces the usability of the Androlyzer. A
solution would be to implement an advanced settings GUI for
the Androlyzer to allow users to enable and disable settings
for the integrated tools.

The results of the evaluation were as expected where the
Androlyzer performed better than the original tools in all cat-
egories. This was not surprising as the Androlyzer automates
the majority of the steps required to do this analysis and that
it hides the majority of the output until the user deliberately
selects to view it, removing visual clutter. The results are still

considered biased and not fully representative of the Android
user and developer base however the consistency of the results
are promising.

VIII. CONCLUSION

Android code can become difficult to read for a developer
and this can result in security bugs. The purpose of the
Androlyzer is to remedy this issue and provide concise and
accurate information to a developer. This was done by inte-
grating FindBugs and DependencyCheck into a single program
to search for security bugs in the source code as well as any
dependencies used. The results of the analysis would then be
displayed in collapsible blocks. The results of our evaluation
show an improvement in usability over the original tools and
the design of our project allow for further integration with
other tools or even integration with IDEs.

Android currently makes up a large share of the smartphone
market and hence there is a large number of people who are
potentially at risk of a security bug. While many tools do exist
to scan for security bugs, many of them are not easy to use and
can confuse developers. Our tool is aimed at newer developers
and power users to allow them to more easily understand what
and where bugs exist in the applications they are developing
or using.

IX. APPENDIX

Figure 1: System work flow from APK file to XML output
for visualization.

Figure 2: Sample Bug output from our integrated program,
the Androlyzer.



Figure 3: Sample Dependency output from our integrated
program, the Androlyzer.

Figure 4: Survey results averaged and compared between the
Androlyzer and DependencyCheck with FindBug.

Figure 5: Survey questions for evaluation of the Androlyzer
versus Dependency-Check and FindBugs.

REFERENCES

[1] A. B., ”AndroBugs/AndroBugs Framework,” GitHub. [Online].
Available: https://github.com/AndroBugs/AndroBugs Framework/blob/
master/README.md. [Accessed: 03-Dec-2016].

[2] Find Security Bugs, Home - Find Security Bugs. [Online]. Available:
https://find-sec-bugs.github.io/. [Accessed: 03-Dec-2016].

[3] Hachman, Mark (2016-02-18). Android leads, Windows phones fade far-
ther in Gartners smartphone sales report. PCWorld from IGD. Retrieved
2016-11-04. [Accessed: 2016-11-08].

[4] H. Hira, ”5 Apps to Hack In-App Purchase in Android”,
Ultimatepctech.com, 2016. [Online]. Available: http://www.
ultimatepctech.com/2016/09/5-apps-to-hack-in-app-purchase-in.html.
[Accessed: 2016-11-08].

[5] ”How to Hack a Mobile App: It’s Easier than You Think!”, Secu-
rity Intelligence, 2016. [Online]. Available: https://securityintelligence.
com/how-to-hack-a-mobile-app-its-easier-than-you-think/. [Accessed:
2016-11-08].

[6] M. D. Ernst, S. Han, P. Vines, E. X. Wu, R. Just, S. Millstein, W. Dietl,
S. Pernsteiner, F. Roesner, K. Koscher, P. B. Barros, and R. Bhoraskar,
Collaborative Verification of Information Flow for a High-Assurance
App Store, Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security - CCS ’14, 2014.

[7] P. Faruki et al., ”Android Security: A Survey of Issues, Mal-
ware Penetration, and Defenses,” in IEEE Communications Sur-
veys & Tutorials, vol. 17, no. 2, pp. 998-1022, Secondquarter
2015. http://ieeexplore.ieee.org.ezproxy.library.ubc.ca/stamp/stamp.jsp?
tp=&arnumber=6999911&isnumber=7110413

[8] SPARTA! Static Program Analysis for Reliable Trusted Apps,
SPARTA! Static Program Analysis for Reliable Trusted Apps. [Online].
Available: http://types.cs.washington.edu/sparta/current/sparta-manual.
html. [Accessed: 03-Dec-2016].

[9] Two Secure Coding Tools for Analyzing Android Apps, SEI Insights,
2014. [Online]. Available: https://insights.sei.cmu.edu/sei blog/2014/04/
two-secure-coding-tools-for-analyzing-android-apps.html. [Accessed:
03-Dec-2016].

[10] Wikipedia (2016). Software Visualization. Wikipedia. Retrieved 2016-
11-04.


