

EECE 571M/491M

Introduction to Hybrid Systems and Control

Dr. Meeko Oishi

Electrical and Computer Engineering University of British Columbia, BC

1

3

http://coursees.ece.ubc.ca/571m

moishi@ece.ubc.ca

Your Instructor

- B.S., Princeton University, 1998
- M.S., Ph.D., Stanford University, 2000 and 2004
- Truman Postdoctoral Fellow, Sandia National Labs (USA)
- Assistant Prof. in ECE at UBC since Aug. 2006
- Visiting researcher at NASA Ames, Honeywell
- Policy experience at US National Academies; US Nat'l Ecological Observatory Network (NEON)

EECE 571M/491M Spring 2008

Practical Information

- Course website:
 - www.ece.ubc.ca/~elec571m
- Office hours:
 - Monday 1:00-3:00pm, Kaiser 3111 (tentative)

EECE 571M/491M Spring 2008

2

Rese

- Hybrid control systemsAircraft flight management systems
- Biological modeling and control
- User-interfaces for hybrid systems
- Research website:

http://www.ece.ubc.ca/~moishi

EECE 571M/491M Spring 2008

Practical Information

- Textbook
 - B. Friedland, "Control system design: An introduction to state-space methods"
- References
 - Nonlinear continuous systems and control Khalil, "Nonlinear systems"
 - Discrete event systems
 - Cassandras and Lafortune, "Introduction to Discrete Event Systems"
 - Switched systems
 - Liberzon, "Switching in Systems and Control"

EECE 571M/491M Spring 2008

5

Practical Information

- Lecture presentations
 - Available online on course website
- Additional notes
 - used with permission of C. Tomlin, Stanford University
 - are from a draft of the monograph *Hybrid* Systems, by J. Lygeros, S. Sastry, C. Tomlin.
- Additional handouts
 - Excerpts as necessary

EECE 571M/491M Spring 2008

Practical Information

- Tentative dates:
 - Midterm 1:
 - Midterm 2:
 - Final report:
- April 18, 2008 (Fri) April 7-11, 2008 (last week of

February 15, 2008 (Fri)

Final presentation: classes)

Problem Sets: 35%

Midterms: 30%

- March 28, 2008 (Fri)
- Linear algebra Matrix algebra
 - Eigenvalues, eigenvectors

Required Background

- Differential equations
 - Linear state-space models
- Discrete Math
 - Basic logic operators

Let me know of conflicts ASAP!

Final project and presentation: 35%

EECE 571M/491M Spring 2008

Grading:

8

6

What are hybrid systems?

- Systems with both
 - Continuous processes
 - Discrete processes
- For example
 - Embedded systems
 - Physical processes with supervisory mode-logic
 - Physical processes with discontinuities
 - Hierarchical systems
 - Some biological processes

EECE 571M/491M Spring 2008

9

Motivation

- Hybrid systems are pervasive
- However, techniques from
 - standard control theory (for continuous systems)
 - standard discrete event systems
 - don't generalize to hybrid systems
- New techniques have been developed to analyze and control hybrid systems
- We will study some of these techniques in this course
- This is an active area of controls research

EECE 571M/491M Spring 2008

10

Example: Automated highway

Automated fleets of vehicles

Example: Robotic hexapod

Example: Feedback in PD

- Problems with movement due to chemical imbalance
- Faulty feedback signal in the brain
- Failures in multi-tasking
 - Reaching
 - Balancing
- Fast switching between tasks

Example: Feedback in PD

- Problems with movement due to chemical imbalance
- Difficulty detecting (estimating) changes

Further examples...

Transportation

- Automobiles
- Civil jet aircraft (autopilots; air traffic control)
- Traffic signals, highway monitoring
- Robotics
 - Dextrous manipulation, haptics
 - Research submarines
 - Biomedical devices
 - Smart wheelchairs

LLCL J/ IN/ HJIN Jping 2000

37

Further examples...

- Biological systems
 - Cell regulation mechanisms
 - Population dynamics
- Economic systems
 - Fiscal policies
- Biomedical systems
 - Circadian clock
 - Prostheses
 - Mitigation of Parkinson's disease symptoms

EECE 571M/491M Spring 2008

38

Challenges in Hybrid Control

- Cooperative control of multiple autonomous vehicles
- Control of embedded systems
- Verification / Reachability
- Estimation and control of stochastic systems
- Computational tools for control synthesis
- High-dimensional systems (scalability of computational methods)
- Biological modeling and control
- Accurate simulation
- Incorporating the human in the loop

Course Content

- Mathematical models
 - Continuous-time models (linear)
 - Discrete event systems (finite state machines, timed automata)
 - Hybrid system formulations
- Basic stability concepts
 - Review of continuous system stability
 - Phase-plane analysis for 2D nonlinear systems
 - Hybrid equilibrium
 - Multiple Lyapunov functions

Course Content

Switched stability

- Systems with state-based switching
- Common Lyapunov function
- LMIs to prove stability of linear systems
 - Global quadratic Lypaunov function
 - Piecewise quadratic Lyapunv functions
- Observability / Controllability of linear hybrid systems
- Optimality
- Estimation

EECE 571M/491M Spring 2008

41

😻 Summary

- Logistics
 - Check course website for most up-to-date information, including room location change starting next week
 - Notify me ASAP of any conflicts with midterm or presentation dates
- Introductory material
 - Hybrid systems are pervasive
 - Hybrid systems require specialized tools for analysis and design
 - Wide range of applications, engineered and natural, can be modeled as hybrid systems
 - Hybrid systems draw upon ideas from both continuous control theory and discrete event systems

Goals of the Course

- Identify when hybrid control is useful
- Categorization and familiarity with different classes of hybrid systems
- Analyze and predict common behaviors of hybrid systems with linear continuous dynamics
- Read research papers in hybrid control
- Solve hybrid control design problems
- Use relevant computational tools
- Recognize difficult hybrid control problems and when computation will be difficult

EECE 571M/491M Spring 2008

42

Summary

- Upcoming topics (this week and next)
 - Further examples
 - Modeling formalism
 - Continuous systems
 - Discrete event systems
 - Hybrid systems
 - Linear vs. nonlinear systems
- Readings
 - Tomlin Lecture Notes 1 and 2
 - Khalil excerpt