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Review: Continuous systems

Differential equations with
output

x=f(x)
y=h(x)
= State x(?)

= Input u(t)
= Output y(1)

Length L

Mass M

0| . 0
x=|.|, x=
0 -%sin6
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= Solution (or trajectory) of this
ODE is x(t)

= Solution requires knowledge
of the initial condition x(0) = x,

UBC
=  What can go wrong with solving ODEs?
= No solutions
= Exercise: Show that dx/dt = -sign(x), x(0) = 0 does NOT have a
solution for t >= 0.
= Multiple solutions
= Exercise: Show that for dx/dt = x1/3, x(0) = 0, both functions
X([) - %tz/z
x(#)=0
are solutions to the differential equation.
=| Theorem (Existence and uniqueness of solutions):
If f(x) is Lipschitz continuous, then the differential equation
dx/dt = f(x), x(0) = x, has a unique solution x(t) for t >0.
= This ensures smoothness by bounding the slope of
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Review: Continuous systems

Lipschitz continuity

= f(x)is Lipschitz continuous if there exists a constant K> 0
such that for all x, y

IO - f(y) I <Kl x-yll
(where || . || indicates the vector norm)
= Kis the Lipschitz constant
= Note that
= If fis Lipschitz continuous, it is also continuous.

= A Lipschitz continuous function is not necessarily differentiable.
= All differentiable functions with bounded derivatives are Lipschitz

EECE 571M / 491M Winter 2008 4




UBC UBC
Review: Discrete systems ' Review: Discrete Systems
(Deterministic) finite automata G =0, R \ Manufacturing machine
= Set of discrete states (or modes) Q = Modes
= Set of discrete inputs (or events, o, QO = {Idle, Working, Down}
transitions) X T
= Transition function R: Q x = -> Q \ = Events
= Initial set of states Q, 3 = { part complete, part
S, arrives, repair, failure }
= Solutions are mode strings and { _ » = Transition function
i G
event strings B ) \\ 3 S, = R(Idle, part arrives) = Working
= Note that R(q,0) = {@} if the - / . R(Working, part complete) =
function is not otherwise defined g 5 f Ide
for Fhat pair . O ‘/Gn—S R(Working, failure) = Down
= Easily encoded in tables R(Down, repair) = Idle
_ R(Down, failure) = {@}, etc.
q(k+1) = R(a(k),0(k)) = Initial state Q, = Idle
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Review: Contin. Sys. & DES

Element Continuous Discrete

Dynamics &= f(z,u) R(qr,0) = qr+1

State reR" qgeq

Control ue R™ ceX

Output y = h(z,u) QmCQ

el |e@=mer  |0leQcQ

Solution x(t) for u(t), x(0) | qlk] for o[k], q(0)
known known
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) Today'’s lecture

= Discrete event systems
= Review

= Discussion and examples of nondeterministic DES

= Hybrid systems

= Differential or difference equations within each mode
= New elements: domains, guards, resets, etc.

= Common forms

= Modeling variations
= Examples

= Bouncing ball

= Water tank
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Discrete systems

Nondeterministic finite automata

= Set of discrete states
(modes) Q

= Set of discrete inputs
(events, transitions) =

= Transition relation
R:QxZX->29

= Initial set of states Q,

= Marked, final, or accept states Qy

qlk + 1] € R(q[k], 0)

GD = (Q,Z’R)
Zoa a,b
==
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alk +1] = Riglkl,0) ~*(12)—2

LBC
Discrete systems

Nondeterministic finite Qo
automata

= Often event strings which lead
to Qy ("marked”, “final”, or

“accept” states) are important ¢ o
(safety, liveness, etc.) L
¢« o
n
n
n

= They are distinguished from
strings which do not reach Q,

= Interpretation: Keep track of -
multiple “paths” in the °
automata simultaneously to \\'
determine which discrete
inputs (event strings) produce Qv ¢
the marked states.

EECE 571M / 491M Winter 2008 10

Discrete systems

Nondeterministic finite automata GN =(0,Z,R)
= Solutions are strings of mode sets
and strings of events that are
“accepted” by the automaton, e.g.
= R(Qys) = qy if there exists at least
one mode in Q, (a subset of Q)
that can transition into q,
= Every nondeterministic finite ac
automata Gy has an equivalent
deterministic finite automata G,
(with modes in 2Q) which accepts

the same language L(Gy)=L(Gp) G, = (O,%,R)
= Gy, may have empty events ¢
which transition the mode silently ?
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Discrete systems

Probabilistic finite automata G, =(0,2,R)
= Set of discrete states (or
modes) Q 0.5

= Set of events (or transitions)
= which have associated

probabilities
= Transition function R

0.5
= Initial set of states Q, /:).5 o
= Solutions are random }A

processes, in the form of
strings of events and modes

(o

¢

ot
o

= Markov chains
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Hybrid Systems

O,
A = Potentially different
continuous dynamics
¥, (x,u,)20 0, associated with each
discrete mode
A
N 8,

Transitions can be
input-driven or state-
driven

Continuous and
discrete inputs

¥7s(x,us)=0

n-1 . Gn— 3
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Hybrid systems

The hybrid system H is a collection with the following entities:

= Discrete state g€Q

= Continuous state r€R"

= Discrete inputs gEX

= Continuous inputs ueUCR™

= Continuous dynamics = f(g,z,u)

= Discrete dynamics

= Initial state Init CQ x R"

R: Q x R"x X x R™ — 29xX

= Domain (combinations of states and inputs for which continuous

evolution is allowed) Dom C @ x R" x ¥ x U

= Interpretation: R enables transitions, Dom forces them
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Example: Bouncing ball

= While the ball is in the air
m d2x/dt2 = -mg
= Upon impact with the ground
Vhew = " CVgqg, 0 <C<1
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Example: Bouncing ball
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The hybrid system H,, is a collection
with the following entities:

x; =0,
= Discrete states Q ;2 <0 O N
2 "

= Continuous state x

= Continuous dynamics
dx/dt = f(q,x)

= Discrete dynamics R(q,x)

= Initial state Init ’\ X, 20

dx/dt =[x,,-g]

= Domain Dom

Reset map Reset(q,x)

-C Xy

{Guard condition Guard(q,q’)
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Example: Water tanks

= One hose fills two tanks o
at constant rate w

= Hose switches
instantaneously

= Tanks leak at rates vl,
v,, respectively

= Goal: Keep water IeveIs
Xy, X, @above ry, ry,

respectively
= Question: How can this ﬂ' Vzﬂ
be modeled as a hybrid dx/dt = w-v
system?
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Example: Thermostat

= Heater in a room is either on
or off

= Temperature rises or falls
depending on the heater’s

status x <19
L E—

= Inaccuracies in temperature off on
measurement N
X =21

= Goal: Keep temperature near
20 C while avoiding
chattering

dx/dt = -ax dx/dt= a(30-x)
x> 18 X < 22

= Question: How can this be
modeled as a hybrid system?
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Hybrid systems

= Classified according to the form of f(x,u) and the
shapes of the domains, guards, and control bounds

= Timed automata

= Rectangular hybrid automata
= Linear hybrid automata

= Piecewise affine automata

= Multi-affine hybrid automata
= Nonlinear hybrid automata

= Switched systems
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Hybrid systems

Common model variations
= Terminology

= Domain, invariant, guard, reset map, etc.

= Description of events (controlled, disturbance, state-based)
= Autonomous hybrid systems

= No discrete inputs and no continuous inputs (e.g., bouncing
ball)

= Disturbance inputs

= Discrete disturbances (unexpected failures)
= Continuous disturbances (wind)

= Switching schemes
= No discrete automaton specified (e.g., arbitrary switching)
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Summary

Review of discrete event systems:
= Deterministic

= Nondeterministic

= Probabilistic

= Hybrid systems defined by states, inputs,
functions/relations, initial conditions, domains

= Modifications to standard continuous and discrete
elements

= Graphical representations of hybrid systems
= Example: Bouncing ball
= Example: Water tank
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