EECE 571M/491M, Spring 2008 Lecture 3

Modeling Hybrid Systems

Meeko Oishi, Ph.D. Electrical and Computer Engineering University of British Columbia, BC

http://courses.ece.ubc.ca/491m moishi@ece.ubc.ca

Tomlin LN 2,3

- What can go wrong with solving ODEs?
 - No solutions
 - Exercise: Show that dx/dt = -siqn(x), x(0) = 0 does NOT have a solution for $t \ge 0$.
 - Multiple solutions
 - Exercise: Show that for dx/dt = x^{1/3}, x(0) = 0, both functions

```
x(t) = \frac{2}{2}t^{3/2}
```

x(t) = 0

are solutions to the differential equation.

Theorem (Existence and uniqueness of solutions): If f(x) is **Lipschitz continuous**, then the differential equation

dx/dt = f(x), $x(0) = x_0$ has a unique solution x(t) for t > 0.

• This ensures **smoothness** by bounding the slope of *f*

EECE 571M / 491M Winter 2008

Review: Continuous systems

 Differential equations with output $\dot{x} = f(x)$

y = h(x)

- State x(t)
- Input u(t)
- Output v(t)
- Solution (or trajectory) of this ODE is x(t)
- Solution requires knowledge of the initial condition $x(0) = x_0$

2

Review: continuous systems

1

Review: Continuous systems

Lipschitz continuity

EECE 571M / 491M Winter 2008

• f(x) is **Lipschitz continuous** if there exists a constant K > 0such that for all x, y

|| f(x) - f(y) || < K || x - y ||

(where || . || indicates the **vector norm**)

- *K* is the **Lipschitz constant**
- Note that
 - If f is Lipschitz continuous, it is also continuous.
 - A Lipschitz continuous function is not necessarily differentiable.
 - All differentiable functions with bounded derivatives are Lipschitz

EECE 571M / 491M Winter 2008

Review: Discrete Systems

Events $\Sigma = \{ \text{ part complete, part} \}$ arrives, repair, failure }

 $Q = \{ Idle, Working, Down \}$

 Transition function R(Idle, part arrives) = Working R(Working, part complete) = Idle R(Working, failure) = DownR(Down, repair) = IdleR(Down, failure) = $\{\emptyset\}$, etc. • Initial state $Q_0 = Idle$

Review: Contin. Sys. & DES

Element	Continuous	Discrete
Dynamics	$\dot{x} = f(x, u)$	$R(q_k,\sigma) = q_{k+1}$
State	$x \in R^n$	$q\in Q$
Control	$u \in R^m$	$\sigma \in \Sigma$
Output	y = h(x, u)	$Q_M \subseteq Q$
Initial Condition	$x(0) = x_0 \in \mathbb{R}^n$	$q[0]\in Q_0\subseteq Q$
Solution	x(t) for u(t), x(0) known	q[k] for σ[k], q(0) known

- Discrete event systems
 - Review
 - Discussion and examples of nondeterministic DES
- Hybrid systems
 - Differential or difference equations within each mode
 - New elements: domains, guards, resets, etc.
 - Common forms
 - Modeling variations
- Examples
 - Bouncing ball
 - Water tank

19

Hybrid systems

- Classified according to the form of f(x,u) and the shapes of the domains, guards, and control bounds
- Timed automata
- Rectangular hybrid automata
- Linear hybrid automata
- Piecewise affine automata
- Multi-affine hybrid automata
- Nonlinear hybrid automata
- Switched systems

UBC

Hybrid systems

Common model variations

- Terminology
 - Domain, invariant, guard, reset map, etc.
 - Description of events (controlled, disturbance, state-based)
- Autonomous hybrid systems
 - No discrete inputs and no continuous inputs (e.g., bouncing ball)
- Disturbance inputs
 - Discrete disturbances (unexpected failures)
 - Continuous disturbances (wind)
- Switching schemes
 - No discrete automaton specified (e.g., arbitrary switching)

- Review of discrete event systems:
 - Deterministic
 - Nondeterministic
 - Probabilistic
- Hybrid systems defined by states, inputs, functions/relations, initial conditions, domains
- Modifications to standard continuous and discrete elements
- Graphical representations of hybrid systems
- Example: Bouncing ball
- Example: Water tank

EECE 571M / 491M Winter 2008

21