EECE 571M/491M, Spring 2008 s
Lecture 5

Stability lectures

= Linear system stability
= Eigenvalues of A
= Linear quadratic Lyapunov functions

Stability of Continuous Systems « Ellpses/ L

= Nonlinear system stability
= Lyapunov’s indirect method

Dr. Meeko Oishi = Lyapunov’s direct method

Electrical and Computer Engineering = Hybrid system stability
Definition of equilibrium
Multiple Lyapunov functions
Common Lyapunov function

University of British Columbia, BC

http://courses.ece.ubc.ca/491m Khalil 4.3, Friedland A.10, Piecewise quadratic Lyapunov functions
moishi@ece.ubc.ca Tomlin LN 6
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Stability of Linear Systems Stability of Linear Systems

Linear System Asymptotic Stability Theorem: n LTI sg{stems can be represented in a variety of
= The autonomous system coordinate systems, yet all representations share the
dx/dt = Ax, same stability properties.
x(0) = x,
is asymptotically stable if and only if the eigenvalues of = Exercise: Consider the invertible transformation
A have strictly negative real part: 7 = Tlx
A(A) < 0 o
! ) = What are the eigenvalues of the transformed system matrix?

(Use Cayley-Hamilton theorem.)
= The trajectories of the system will follow
X(t) = exp(At) x,
which converges exponentially to 0 as x -> co.
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Linear system stability

= Example: Spring-mass-damper Z
>
system wal S,
friction <~
. b Z
= Spring constant k C
= Damping coefficient b M
= Massm 1
v(7)
my = —ky — by
_ _ dy(®)
z1(t) = y(t), z2(t) = gt

d:l?l(t) 0 1
[ e ] = [ _ _ ]x(t)

A b
M M
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Linear system stability

= Example: Spring-mass-damper Z

~

S m >
yste a3,

friction <~

. b Z

= Eigenvalues occur where C

0= A+ Xb/m+k/m M

= And have negative real part for l\“'

b>0,k>0
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Phase-plane analysis

= For 2-D linear systems, the phase plane plot is a plot of trajectories
in (x,, X,) space.

= Stable trajectories will tend towards the origin and can be classified
according to the types of eigenvalues:
= Both negative real numbers (stable node)
= Complex conjugate pair with negative real part (stable focus)

= Unstable trajectories tend towards infinity and can be classified
according to the types of eigenvalues:
= Both positive real numbers (unstable node)
= Complex conjugate pair with positive real part (unstable focus)
= Positive and negative real numbers (saddle)

= What happens when one eigenvalue has 0 real part?
= What happens when both eigenvalues have 0 real part?
= What happens when eigenvalues are repeated?
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Lyapunov stability for LTI sys.

= For the dynamical system
&= Az, z(0)=xzo

= consider the quadratic Lyapunov function
V(z) =2TPz, P=PT

= whose time-derivative
V(z) = aTPi+iTPx
= 2TPAz+ (Az)T Pz
= 2T(PA+ ATP)x
= can be written as
V=-—2"Qz, Q2 —(PA+A"P)=Q"
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Lyapunov stability for LTI sys.

Theorem: Lyapunov stability for linear systems
= The system & = Az, z(0) = o
is asymptotically stable about x=0 if and only if
for any positive definite Q, there exists a positive definite P
such that
ATP 4+ PA= —-Q

This is known as the Lyapunov equation.

oo
= Further, P= / eATthAtdt
0

uniquely solves the Lyapunov equation.
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Positive definite matrices

= A matrix P is positive definite iff

! Px > 0,
zTPx =0,

x#0

z=0

= A matrix P is positive semi-definite iff

zT Pz >0

= A matrix P is negative definite iff

' Pz <0,
zT Pz =0,

xz#0

z=0

= A matrix P is negative semi-definite iff

2Pz <0
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Positive definite matrices

= Any real, symmetric positive definite matrix P=PT > 0 has real
eigenvalues A; > 0

= Note that P can be diagonalized by an orthonormal basis
P:QAQTy QTQZIaA:dla’g(/\la a/\n)

where the columns of () are normalized, orthogonal
eigenvectors (even if there are repeated eigenvalues)

= Values of V(x)=xTPx are bounded by
)\min(P)wT:v <z'Pzr< /\max(P)me
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Positive definite matrices

= Evaluate the following matrices for positive definiteness:

3 0
P__03
[0 1
P__l 0
(3 0
P‘_oo
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' Positive definite matrices Example: SMD system
= Interpretation: The function = Consider the standard autonomous L
V(z)=2"Pz<c spring-mass-damper system. Wl =
represents an ellipse in R with axes along the mE = —kz — b fricltionik
eigenvectors of P = Assume m=1, b=2, k=1. TS
. = Choose Q = 1. M
= Consider the 2D case: = By computing a P that is positive 1
For c=1, with \a > X\; >0 . definite, we prove asymptotic y(®)
1 _ 1 Nov y stability.
< A T _
Va2 T VA Nive ATP+PA=-1
T
T2
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Lyapunov stability Lyapunov stability
= What if asymptotic stability is not possible? = Definition:
= If V always decreases, then the system is asymptotically stable S . %
= If V decreases or maintains a constant value as time increases, The eqUIIIbrlum point x of
then the system is stable in the sense of Lvapunov. dx/dt = f(x), x(0) = x,
Asymptotically stable is stable in the sense of Lyapunov if for all ¢ > 0
o @ /@ there exists a & > 0 such that
V(x P [ b -
—— g [|lzo]| <0 = ||z(t)|| <€ ¥E=>0
X |
> . s = Definition:
e % A The equilibrium point x* is asymptotically stable if it
— // \ is stable and o can be chosen such that
RN\ s T ] —
N\ loll < 8= lim | ()] = 0
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Lyapunov stability for LTI sys.

Linear quadratic Lyapunov theorems

= If P>0,Q >0, then system is asymptotically stable

= If P>0,Q 20, then system is stable in the sense of Lyapunov

= If P>0,Q 20, and (Q, A) observable, then system is
asymptotically stable

= IfP>0,Q =0, the sublevel sets of { x | xXTPx < a } are
invariant and are ellipsoids

= IfP >0, Q =0, then the system is not stable.
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Lyapunov stability

Converse linear quadratic Lyapunov theorems

= If Ais asymptotically stable, then there exists P > 0, Q > O that
satisfy the Lyapunov equation

= If AisstableandQ 2 0,thenP >0
= If Aisstable, Q 2 0, and (Q, A) is observable, then P > 0
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Example: SMD system

= Consider the spring-mass-damper system L
again. <
= Other Lyapunov functions are possible. Wall 2
Case 1: 1 s 1 friction <~
" ' V(z)zimv +§kz b zr
Proves stability in the sense of Lyapunov, M
since
V(z) = ) f(z) = —bv® <0 for all z
81: y(1)
1 1 1
« Case2: V(z) = 5mv2 + §kx2 + ibxv
Proves asymptotic stability since dV/dt < 0
= Now evaluate each of these functions in
terms of the linear quadratic Lyapunov and
converse linear quadratic Lyapunov
theorems
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Example: SMD system

= Case 1:
= P>0,Q =0 --> therefore the system is stable.
= Butis (Q, A) observable?

= Case 2:

= P> 0, Q> 0--> therefore the system is globally
asymptotically stable.

= By the converse Lyapunov theorem, we know that
since eig(A) < 0 a quadratic Lyapunov function must
exist.

EECE 571M / 491M Winter 2007 20




Example 2 W% Solving the Lyapunov equation

= Consider the linear system with Integral solution to the Lyapunov equation

= A=1[-110;-100 1] = If dx/dt = Ax is asymptotically stable and Q = QT > 0, OR

if dx/dt = Ax is stable in the sense of Lyapunov & Q = QT = 0,
= Does a quadratic Lyapunov function that P /°° ATt Qe
satisfies the Lyapunov equation exist? 0

is the unique solution to the Lyapunov equation
ATP+PA+Q=0

= If you know Q, you can also use P = lyap(A’,Q) in Matlab
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Solving the Lyapunov equation J_Solving the Lyapunov equation
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To show stability, we want to find a positive definite matrix P
such that

ATP+PA<O
P>0

The variable in these matrix equations is the matrix P
This is known as a Linear Matrix Inequality

Efficient tools have been developed to quickly solve LMIs by
posing them as convex optimization problems.
= If the problem has a solution, the algorithm will find it.

= If the problem does not have a solution, the algorithm will return a
certificate which indicates as such.

The Matlab LMI Control Toolbox can solve this in O(n3).

23
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GUI to specify LMIs
>> lmiedit

The system of LMIs is encoded in Imisys

The optimization to find a feasible solution to the LMI is called through
>> [tmin, pfeas]=feasp(lmisys)
>> p = decZmat(lmisys, pfeas, p)

More help can be found at
>> help lmidem

Or through the demo
>> help 1midem

More on this later...

24
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Summary: Linear Sys. Stability

= Quadratic Lyapunov functions for linear systems
= Positive definite matrix properties
= Linear quadratic Lyapunov stability theorem for linear systems
= Necessary and sufficient conditions for stability (special case for
linear systems)
= Converse theorems
= Asymptotic stability vs. stability in the sense of Lyapunov
= Tools to solve the Lyapunov equation and LMIs
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Extensions to nonlinear sys.

= Nonlinear systems have significant differences that complicate
stability analysis.

= As opposed to linear systems, nonlinear systems can have
multiple equilibria.

= As opposed to linear systems, nonlinear system stability is
often only a local result (e.g., valid within some neighborhood
of the equilibrium point).

= As opposed to linear systems, nonlinear systems rarely have
closed-form solutions (e.g., there is no x(t) = eAt x(0) ).

= In addition to the behavior around equilibria that arose in linear

systems, nonlinear systems may exhibit orbits, limit cycles,
bifurcations, and other phenomena.
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Nonlinear System Stability

Theorem: Lyapunov’s indirect method
= Let x*=0 be the equilibrium of the differentiable function
dx/dt = f(x), x(0) = x,
and let D c R" be a set containing x*. Let
of
A - 8_1E T=xq
such that the linearized systemis 2 = Az, z =2 — xg
= Then
= X* is asymptotically stable if Re();)<0 for all
eigenvalues of A.

= X* is unstable if Re(,)>0 for at least one eigenvalue of
A.
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Nonlinear System Stability

= Lyapunov’s “second method” or “direct method”

= Theorem:
Let x*=0 be the equilibrium of
dx/dt = f(x), x(0) = X,
and let D c R" be a set containing x*. If V: D->Ris a
continuously differentiable function such that

V() = 0
V(z) > 0,Yxz e D\{0}
V(z) < 0,YzeD

then x* is stable. Further more, if x*=0 is stable and

V(x) < 0,Yz € D\{0}
then x* is asymptotically stable.
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Lyapunov stability

= Lyapunov function is sufficient condition for stability
= Evaluating eigenvalues is necessary and sufficient for stability

= Allows trajectories which do not converge to the origin to be “stable”.

= If the system is stable, then there exists a Lyapunov function.

= If a Lyapunov function cannot be found, nothing is known about the
stability of the system.

= For general nonlinear systems, these functions can be hard to find.

= Recent computational tools in LMIs and polynomial functions can
provide numerical computations of Lyapunov functions.
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Summary: Nonlinear sys.

= Stability in the sense of Lyapunov

= Indirect method:

= If the linearization is asymptotically stable, then the nonlinear
system is locally asymptotically stable.

= If the linearization is unstable, then the nonlinear system is
locally unstable.

= In general, no conclusions are possible regarding the
nonlinear system if the eigenvalues have 0 real part. (Some
exceptions for 2D systems -- Hartman-Grobman theorem)

= Direct method:

= If you can find a Lyapunov function, then you know the system
is locally stable in the sense of Lyapunov.

= Sufficient condition for stability
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Next couple of weeks

= Introduction to hybrid stability
= Hybrid equilibrium
= Hybrid stability

Multiple Lyapunov functions
= (Most general stability theory)

= Global quadratic Lyapunov functions

= (specific to hybrid systems with linear dynamics and arbitrary
switching)

= Piecewise quadratic Lyapunov functions

= (hybrid systems with linear or affine dynamics and state-based
switching)
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