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! Linear system stability
! Eigenvalues of A

! Linear quadratic Lyapunov functions

! Ellipses / LMIs

! Nonlinear system stability

! Lyapunov’s indirect method

! Lyapunov’s direct method

! Hybrid system stability

! Definition of equilibrium

! Multiple Lyapunov functions

! Common Lyapunov function

! Piecewise quadratic Lyapunov functions

Stability lectures
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Stability of Linear Systems

Linear System Asymptotic Stability Theorem:

! The autonomous system

dx/dt = A x,

x(0) = x0

is asymptotically stable if and only if the eigenvalues of
A have strictly negative real part:

!i(A) < 0.

! The trajectories of the system will follow

x(t) = exp(At) x0

which converges exponentially to 0 as x -> ! .
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Stability of Linear Systems

! LTI systems can be represented in a variety of
coordinate systems, yet all representations share the
same stability properties.

! Exercise: Consider the invertible transformation

z = T-1x.
! What are the eigenvalues of the transformed system matrix?

(Use Cayley-Hamilton theorem.)
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Linear system stability

! Example: Spring-mass-damper
system

! Spring constant k

! Damping coefficient b

! Mass m

EECE 571M / 491M Winter 2007 6

Linear system stability

! Example: Spring-mass-damper
system

! Eigenvalues occur where

! And have negative real part for
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Phase-plane analysis

! For 2-D linear systems, the phase plane plot is a plot of trajectories
in (x1, x2) space.

! Stable trajectories will tend towards the origin and can be classified
according to the types of eigenvalues:
! Both negative real numbers (stable node)

! Complex conjugate pair with negative real part (stable focus)

! Unstable trajectories tend towards infinity and can be classified
according to the types of eigenvalues:
! Both positive real numbers (unstable node)

! Complex conjugate pair with positive real part (unstable focus)

! Positive and negative real numbers (saddle)

! What happens when one eigenvalue has 0 real part?

! What happens when both eigenvalues have 0 real part?

! What happens when eigenvalues are repeated?
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! For the dynamical system

! consider the quadratic Lyapunov function

! whose time-derivative

! can be written as

Lyapunov stability for LTI sys.



EECE 571M / 491M Winter 2007 9

Lyapunov stability for LTI sys.

Theorem: Lyapunov stability for linear systems

! The system 

is asymptotically stable about x=0 if and only if

for any positive definite Q, there exists a positive definite P

such that

This is known as the Lyapunov equation.

! Further,

uniquely solves the Lyapunov equation.
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! A matrix P is positive definite iff

! A matrix P is positive semi-definite iff

! A matrix P is negative definite iff

! A matrix P is negative semi-definite iff

Positive definite matrices
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! Any real, symmetric positive definite matrix P=PT > 0 has real
eigenvalues !i > 0

! Note that P can be diagonalized by an orthonormal basis

where the columns of      are normalized, orthogonal
eigenvectors (even if there are repeated eigenvalues)

! Values of V(x)=xTPx are bounded by

Positive definite matrices
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! Evaluate the following matrices for positive definiteness:

Positive definite matrices
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Positive definite matrices

! Interpretation: The function

represents an ellipse in Rn with axes along the
eigenvectors of P

! Consider the 2D case:

For c=1, with
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Example: SMD system

! Consider the standard autonomous
spring-mass-damper system.

! Assume m=1, b=2, k=1.

! Choose Q = I.

! By computing a P that is positive
definite, we prove asymptotic
stability.

EECE 571M / 491M Winter 2007 15

Lyapunov stability

! What if asymptotic stability is not possible?

! If V always decreases, then the system is asymptotically stable

! If V decreases or maintains a constant value as time increases,
then the system is stable in the sense of Lyapunov.

V(x)

(From Murray, Li, Sastry)

V(x)
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Lyapunov stability

! Definition:

The equilibrium point x* of

dx/dt = f(x), x(0) = x0

is stable in the sense of Lyapunov if for all " > 0
there exists a  # > 0 such that

! Definition:

The equilibrium point x* is asymptotically stable if it
is stable and # can be chosen such that
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Linear quadratic Lyapunov theorems

! If  P > 0, Q > 0, then system is asymptotically stable

! If  P > 0, Q " 0, then system is stable in the sense of Lyapunov

! If  P > 0, Q " 0, and (Q, A) observable, then system is
asymptotically stable

! If P > 0, Q " 0, the sublevel sets of { x | xTPx # a } are
invariant and are ellipsoids

! If P " 0, Q " 0, then the system is not stable.

Lyapunov stability for LTI sys.
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Converse linear quadratic Lyapunov theorems

! If  A is asymptotically stable, then there exists P > 0, Q > 0 that
satisfy the Lyapunov equation

! If  A is stable and Q " 0, then P " 0

! If  A is stable, Q " 0, and (Q, A) is observable, then P > 0

Lyapunov stability
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Example: SMD system

! Consider the spring-mass-damper system
again.

! Other Lyapunov functions are possible.

! Case 1:

Proves stability in the sense of Lyapunov,
since

! Case 2:

Proves asymptotic stability since dV/dt < 0

! Now evaluate each of these functions in
terms of the linear quadratic Lyapunov and
converse linear quadratic Lyapunov
theorems
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Example: SMD system

! Case 1:

! P > 0, Q " 0 --> therefore the system is stable.

! But is (Q, A) observable?

! Case 2:

! P > 0, Q > 0 --> therefore the system is globally
asymptotically stable.

! By the converse Lyapunov theorem, we know that
since eig(A) < 0 a quadratic Lyapunov function must
exist.
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Example 2

! Consider the linear system with

! A = [-1 10; -100 1]

! Does a quadratic Lyapunov function that
satisfies the Lyapunov equation exist?
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Solving the Lyapunov equation

Integral solution to the Lyapunov equation

! If dx/dt = Ax is asymptotically stable and Q = QT > 0, OR

if dx/dt = Ax is stable in the sense of Lyapunov & Q = QT " 0,

is the unique solution to the Lyapunov equation

! If you know Q, you can also use  P = lyap(A’,Q) in Matlab
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Solving the Lyapunov equation

! To show stability, we want to find a positive definite matrix P
such that

! The variable in these matrix equations is the matrix P

! This is known as a Linear Matrix Inequality

! Efficient tools have been developed to quickly solve LMIs by
posing them as convex optimization problems.

! If the problem has a solution, the algorithm will find it.

! If the problem does not have a solution, the algorithm will return a
certificate which indicates as such.

! The Matlab LMI Control Toolbox can solve this in O(n3).
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Solving the Lyapunov equation

! GUI to specify LMIs
>> lmiedit

! The system of LMIs is encoded in lmisys

! The optimization to find a feasible solution to the LMI is called through
>> [tmin, pfeas]=feasp(lmisys)

>> p = dec2mat(lmisys, pfeas, p)

! More help can be found at

>> help lmidem

! Or through the demo

>> help lmidem

! More on this later…
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! Quadratic Lyapunov functions for linear systems

! Positive definite matrix properties

! Linear quadratic Lyapunov stability theorem for linear systems

! Necessary and sufficient conditions for stability (special case for
linear systems)

! Converse theorems

! Asymptotic stability vs. stability in the sense of Lyapunov

! Tools to solve the Lyapunov equation and LMIs

Summary: Linear Sys. Stability
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! Nonlinear systems have significant differences that complicate
stability analysis.

! As opposed to linear systems, nonlinear systems can have
multiple equilibria.

! As opposed to linear systems, nonlinear system stability is
often only a local result (e.g., valid within some neighborhood
of the equilibrium point).

! As opposed to linear systems, nonlinear systems rarely have
closed-form solutions (e.g., there is no x(t) = eAt x(0) ).

! In addition to the behavior around equilibria that arose in linear
systems, nonlinear systems may exhibit orbits, limit cycles,
bifurcations, and other phenomena.

Extensions to nonlinear sys.
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Nonlinear System Stability

Theorem: Lyapunov’s indirect method

! Let x*=0 be the equilibrium of the differentiable function

dx/dt = f(x), x(0) = x0

and let             be a set containing x*.  Let

such that the linearized system is

! Then

! x* is asymptotically stable if Re(!i)<0 for all
eigenvalues of A.

! x* is unstable if Re(!i)>0 for at least one eigenvalue of
A.
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Nonlinear System Stability

! Lyapunov’s “second method” or “direct method”

! Theorem:

Let x*=0 be the equilibrium of

dx/dt = f(x), x(0) = x0

and let             be a set containing x*.  If V: D->R is a
continuously differentiable function such that

then x* is stable.  Further more, if x*=0 is stable and

then x* is asymptotically stable.
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! Lyapunov function is sufficient condition for stability

! Evaluating eigenvalues is necessary and sufficient for stability

! Allows trajectories which do not converge to the origin to be “stable”.

! If the system is stable, then there exists a Lyapunov function.

! If a Lyapunov function cannot be found, nothing is known about the
stability of the system.

! For general nonlinear systems, these functions can be hard to find.

! Recent computational tools in LMIs and polynomial functions can
provide numerical computations of Lyapunov functions.

Lyapunov stability

EECE 571M / 491M Winter 2007 30

! Stability in the sense of Lyapunov

! Indirect method:

! If the linearization is asymptotically stable, then the nonlinear
system is locally asymptotically stable.

! If the linearization is unstable, then the nonlinear system is
locally unstable.

! In general, no conclusions are possible regarding the
nonlinear system if the eigenvalues have 0 real part.  (Some
exceptions for 2D systems -- Hartman-Grobman theorem)

! Direct method:

! If you can find a Lyapunov function, then you know the system
is locally stable in the sense of Lyapunov.

! Sufficient condition for stability

Summary: Nonlinear sys.
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! Introduction to hybrid stability

! Hybrid equilibrium

! Hybrid stability

! Multiple Lyapunov functions

! (Most general stability theory)

! Global quadratic Lyapunov functions

! (specific to hybrid systems with linear dynamics and arbitrary
switching)

! Piecewise quadratic Lyapunov functions

! (hybrid systems with linear or affine dynamics and state-based
switching)

Next couple of weeks


