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! (Nonlinear) continuous system stability

! Indirect method
! If the linearized system has Re(!i)<0 (for all i), the nonlinear system is

locally asymptotically stable about the equilibrium point

! If the linearized system has Re(!i)>0 (for at least one i), the nonlinear
system is locally asymptotically unstable about the equilibrium point

! If the linearized system has Re(!i)=0 (for at least one i), no claims may
be made about the stability of the nonlinear system

! Direct method
! If you can find a Lyapunov function, then the system is stable.

! If you cannot find a Lyapunov function, you cannot claim anything
about the stability of the system about the equilibrium point.

! Lyapunov functions are “energy-like functions”

! Lypaunov functions are a sufficient condition for stability

! Special case: Lyapunov theory for linear systems

! Necessary and sufficient conditions

! Quadratic Lyapunov functions

Review
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! For the dynamical system

! consider the quadratic Lyapunov function

! whose time-derivative

! can be written as

Review: Lyapunov equation
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Theorem: Lyapunov stability for linear systems

! The equilibrium point x*=0 of dx/dt = Ax is asymptotically
stable if and only if for all matrices Q = QT > 0 there exists
a matrix P = PT > 0 such that

! For a given Q, P will be unique

! The solution P is given by

! To numerically solve for P, formulate the linear matrix inequality

! And invoke the Matlab LMI toolbox

Review: Lyapunov stability
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! Review

! Continuous system stability

! Linear quadratic lyapunov theory

! LMIs

! Introduction to hybrid stability

! Hybrid equilibrium

! Hybrid stability

! Multiple Lyapunov functions

! Hybrid systems

! Switched systems

Today’s lecture
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Hybrid equilibrium

! Definition:

The continuous state is an equilibrium
point of the autonomous hybrid automaton 

H = (Q, X, f, R, Dom, Init) if
!

!

! Assume without loss of generality that x* = 0

! Jumps out of (q,0) are allowed as long as in the
new mode, the continuous state is x = 0

EECE 571M / 491M Spring 2008 7

Hybrid stability

! Definition:

The equilibrium point x* = 0 of the autonomous
hybrid automaton H = (Q, X, f, R, Dom, Init) is
stable if for all " > 0 there exists a # > 0 such that
for all executions ($, q, x) starting from the 

state (q0, x0),

! As before, the continuous state must merely stay
within some arbitrary bound of the equilibrium 
point -- convergence is not required
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Hybrid stability

! Definition:

The equilibrium point x* = 0 of the autonomous
hybrid automaton H = (Q, X, f, R, Dom, Init) is
asymptotically stable if it is stable and # can be
chosen such that for all executions ($, q, x) starting

from the state (q0, x0),

! Note that ($, q, x) is assumed to be an infinite

execution, with

! Recall that for non-Zeno executions, t! = !
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Hybrid stability

Controller 1
dx/dt = A1x

Controller 2
dx/dt = A2x

STABLE STABLE

UNSTABLE

Controller 1
dx/dt = A1x

Controller 2
dx/dt = A2x

STABLE STABLE

STABLE
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Hybrid stability

Controller 1
dx/dt = A1x

Controller 2
dx/dt = A2x

UNSTABLE UNSTABLE

UNSTABLE

Controller 1
dx/dt = A1x

Controller 2
dx/dt = A2x

UNSTABLE UNSTABLE

STABLE
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Hybrid stability: Example 1

Controller 1
dx/dt = A1x

Controller 2
dx/dt = A2x

STABLE STABLE

UNSTABLE! 
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Init =Q){X \ 0}

Dom = {q1,x1x2 * 0}+{q2,x1x2 , 0}

R(q1,{x | x1x2 , 0}) = (q2,x), R(q2,{x | x1x2 * 0}) = (q1,x)
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Hybrid stability: Example 1

Controller 1
dx/dt = A1x

Controller 2
dx/dt = A2x

STABLE STABLE

UNSTABLE
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Hybrid stability: Example 1

Controller 1
dx/dt = A1x

Controller 2
dx/dt = A2x

STABLE STABLE

UNSTABLE
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Multiple Lyapunov functions

Consider a Lyapunov-like function V(q,x):

! When the system is evolving in mode q, V(q,x) must decrease
or maintain the same value

! Every time mode q is re-visited, the value V(q,x) must be lower
than it was last time the system entered mode q.

! When the system switches into a new mode q’, V may jump in
value

! For inactive modes p, V(p,x) may increase

! Requires solving for V directly

V(x)
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Hybrid Lyapunov stability

Theorem: Lyapunov stability for hybrid systems

! Consider a hybrid automaton H with equilibrium point x*=0.
Assume that there exists an open set  such that

for some   .  Let be a
continuously differentiable function in x such that for all :

! If for all ($,q,x) starting from     , and all ,
the sequence        is non-increasing (or
empty), then x*=0 is a stable equilibrium point of H.
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Multiple Lyapunov functions

! Lyapunov-like function in each mode must

! Decrease when that mode is active

! Enter that mode with a value lower than the last time the mode
was entered

! Valid for any continuous dynamics (including nonlinear) and any
reset map (including ones with discontinuities in the state)

! Requires construction of sequence of ‘initial’ values of V(q,x)
each time a mode is re-visited

(Defeats goal of bypassing direct integration or solution x(t) )

V(x)
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! Candidate Lyapunov function

! Check whether the function meets the requirements for stability

! Lyapunov function in each mode

! Sequence for each mode

Hybrid stability: Example 1
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Hybrid stability: Example 1

! With Q1=Q2=I

! Lyapunov
functions in
each mode

! Level sets are
ellipses
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Hybrid stability: Example 1

! These Lyapunov-like functions
are not acceptable candidates
to show hybrid stability

! V(q,x) decreases while 
mode q is active

! But V is higher when 
mode is re-visited
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Hybrid stability: Example 2

Controller 1
dx/dt = A1x

Controller 2
dx/dt = A2x

STABLE STABLE

STABLE
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Hybrid stability: Example 2

! With Q1=Q2=I

! Lyapunov
functions in
each mode

! Level sets are
ellipses
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Hybrid stability: Example 2

! These Lyapunov-like functions
are acceptable candidates to
show hybrid stability

! V(q,x) decreases while 
mode q is active

! V is lower when mode 
is re-visited
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Multiple Lyapunov functions

! Often difficult to use in practice!

! To yield more practical theorems, focus on specific classes of

! switching schemes (arbitrary, state-based, timed)

! dwell times within each mode

! continuous dynamics (linear, affine)

! Lyapunov functions (common Lyapunov functions, piecewise
quadratic Lyapunov functions, etc.)

V(x)
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! Hybrid equilibrium

! Allows switching

! Continuous state must be 0

! Hybrid stability

! Switching allowed so long as the continuous state remains
bounded

! Multiple Lyapunov functions

! Most general form of stability

! Difficult to use in practice

! Narrow according to structure within the hybrid system

Summary


