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Today'’s lecture

= Review
= Hybrid equilibrium
= Hybrid stability
= Multiple Lyapunov functions

= Global Linear Quadratic Lyapunov function
= (Results from Johansson and Rantzer 1998)

= Piecewise Linear Quadratic Lyapunov functions
= (Results from Johansson and Rantzer 1998)
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Globally Quad. Lyapunov Fcn

= Consider the case when
= State-space is partitioned into disjoint regions
= Reset map is the identity
= Dynamics are linear and asymptotically stable in each mode
= Only one transition is possible from each mode

= The same linear quadratic Lyapunov function is used in each
mode (hence ‘global’)

= Vi(x) =xTPx for all modes
but-Q = ATP +PA may be different each mode

= Multiple Lyapunov Function theorem
= s satisfied for P > 0, Q; > 0.

= can be simplified into the Globally Quadratic Lyapunov Function
theorem.
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/) GQLF Example #2

= Try Al =[-0.11;-5-0.1] =A3 and A2 =[-0.15; -1-0.1] = A4
(stable, but no quadratic Lyapunov function)
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GQLF Example #3

= Try Al =[-5-4; -1 -2] and A2 = [-2 -4; 20 -4]
(stable, but no quadratic Lyapunov function)
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Relaxing the Global QLF

Switched systems (continuity of the state)

Only need to have positive definiteness within sectors
(not RM)

Computationally done through “S-procedure”
Still solve a set of LMIs
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Piecewise Quad. Lyap. fun

= When no common Lyapunov function exists
= Different Lyapunov-like functions in each mode
= Disjoint partition of the state-space

= Described by intersections of hyperplanes

= Domain is set of convex polyhedra

= Linear dynamics in each mode

= Goal: Find P, such that
= P>0 for xin X
« ATP,+PA <0 for x in X;
= and V(p,x) maintains continuity across modes
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Piecewise Quad. Lyap. fun

Theorem 9 (Piecewise Quadratic Lyapunov Function) H = (S, Init, f, Dom, R) with
equilibrium ze = 0. Assume that for all i:

o flgi.x) = Aw, A; € RV
e Dom = Ui{¢g;} x {a € R": Eqa > 0,..., Bz > 0}
e Init € Dom

e for allx € R"

Y if (¢i,x) € 9Dom )
|Rgi- 0)| = { 0 otherwise (46)
such that

(qr,2") € R(qi,v) = Fro = F,qp # ¢ 0" =« (47)

where Fy, F; € R™n,

Furthermore, assume that for all x € EF. T(x) = 0. Then, if there exvists U; = UL,
W= U'IT. and M = M7 such that P; = FL.TA[F,- satisfies:

ATP + PA;+ EI'UE;, < 0 (48)
P —EIWE: > 0 (49)

where U;, W; are non-negative, then x. = 0 is asymptotically stable.




Piecewise Quad. Lyap. fun
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Summary

= Global Quadratic Lyapunov functions
« Easiest to start with
= Irrespective of switching strategy
= Solved by LMIs

= Piecewise Quadratic Lyapunov functions

= When no global quadratic Lyapunov function
exists

= Solved by LMIs
= Switched linear dynamics
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