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Review

Three major theorems for hybrid systems:
= Multiple Lyapunov Function
= General nonlinear dynamics, non-identity reset map
= Globally Quadratic Lyapunov Function (a type of Common Lyapunov
Function)
= Linear dynamics, quadratic Lyapunov function
= Identity reset map

= SAME Lyapunov function must hold in ALL modes for ALL states (not just in
domain)

= Piecewise Quadratic Lyapunov Function
= Linear dynamics, quadratic Lyapunov function
= Identity reset map

= Potentially DIFFERENT Lyapunov functions in every mode, must hold only
for states the DOMAIN of each particular mode.
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Review: Multiple Lyap. Fcns.

Consider a Lyapunov-like function V(q,x):

= When the system is evolving in mode g, V(q,x) must decrease
or maintain the same value

= Every time mode q is re-visited, the value V(q,x) must be lower
than it was last time the system entered mode q.

=  When the system switches into a new mode q’, V may jump in
value

= For inactive modes p, V(p,x) may increase
= Requires solving for V directly vy

=

X
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Preview

What's next:
= Return to Common Lyapunov Function
= Classes of systems for which GQLFs are known to exist
= Classes of systems for which GQLFs are known NOT to exist

= Switching control

= How to use Lyapunov functions to synthesize a switching controller for
stability

= Gain scheduling as hybrid control

= Chattering
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Today'’s lecture

= Examples
= Example #1: Switched stability of a VSTOL aircraft
= M. Oishi and C. Tomlin, IEEE CDC 1999
= Example #2: Backing up a truck-trailer
=« C. Altafini, A. Speranzon, K. Johansson, HSCC 2002
= C. Altafini, A. Speranzon, B. Wahlberg, IEEE TRA 2001
= Example #3: Biological cell dynamics
= R. Ghosh, C. Tomlin, HSCC 2001
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Example #1: VSTOL aircraft

= Vectored thrust aircraft
= Three “modes” of operation
= Conventional (CTOL)

= Transition >

« Vertical (VTOL)
= Nonlinear system approximated by hybrid system
= Inputs

= Thrust (T)

= Pitch acceleration (d26/dt2) (through the elevators)

= Thrust angle acceleration (d28/dt?) (through torque applied to the nozzles)
= State vector

= Horizontal position X, horizontal speed dx/dt

= Vertical position z, vertical speed dz/dt

= Pitch 6, pitch rate do/dt

= Thrust angle §, thrust angle rate do/dt
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Example #1: VSTOL aircraft

VTOL: Vertical Take-Off/Landing
= Thrust is 90° from horizontal
= Nonlinear dynamics

M{g}:R(o)[T_Oeuz]_[]\gg]

= Closed-loop dynamics “linearized” by nonlinear control law which tracks
desired trajectories in (X, z) (assuming ¢ = 0)

= Resulting error dynamics satisfy

é = Ae, where 0 1 0 0 01 0 0
o 1o o 1 0 o o 1 0
A = diag{A;, Ao} A=l 0 o 1 |®0o 0 0 1
—a} —al —ad —al —a? —a} —a3 —a3
= With constants chosen by placing closed-loop poles at X, = 1.3,
(s+X)t = st 4+ ass® + ans® + a1s + ag
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Example #1: VSTOL aircraft

CTOL: Conventional Take-Off/Landing
= Thrust is 0° from horizontal
= Nonlinear dynamics

2] =me(we [ ]+ [ L ])-[on ]

= Closed-loop dynamics “linearized” by nonlinear control law which tracks
desired trajectories in (x, z) (assuming ¢ = 0)

Resulting error dynamics satisfy
0

1 0 0 0

. 0 1 0
e_A?’Where a0 0 1 0ol fo 0 1 0
A = diag{4;, A2} “lo o 0o 1|™|o 0o o0 1
—a) —al —a}—a} —a} —af —a}—a3
With constants chosen to place closed-loop poles at A. = 1.3,
(54 Xe)* = s* + a35® + aas® + 15 + ag
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Example #1: VSTOL aircraft

TRANSITION: Short Take-Off/Vertical Landing
= Thrust is 09-900 from horizontal
= Nonlinear dynamics

[ L] =ro (7@ | L]+ rame ])_[J\/(}g]

Tsind — eus

= Closed-loop dynamics “linearized” by nonlinear control law which tracks
desired trajectories in (x, z, §) (assuming ¢ = 0)

= Resulting error dynamics satisfy
0

) 1 0 0 01 0 0

€= Ae, where 0 0 1 0 000 1 0

A = diag(Ar, A2, 43) A=lg 0 0 1 [*™|o 0 0 1
—a) —al —a}—a} —a} —af —a}—a3

polesat A\c =13, \; = 1.3 3 $

= With constants chosen to place closed-loop 4, _| 0 1
¢ % T
(s + )\e)4 =s* +a3s® +ans® +a1s +ap
(s+X)? =8> +ads+ad
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Example #1: VSTOL aircraft

= Switched nonlinear system
= “Placeholder” continuous variables in modes with fewer states

Onozzle
>

§>90°

TRANS. / «—\ CTOL

Onozzle

‘_
0<0°

= Now find a linear quadratic Lyapunov function to guarantee stability of the
switched system

= Easiest to start with a Common Lyapunov function
v(e,t) = e? Pe P>0
ATP+PA=-1 A= diag{A4, A3}
= Which we know exists since A is stable.
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Example #1: VSTOL aircraft

= A Common Lyapunov function guarantees stability for any switching

strategy
= Short Take-off Maneuver: (TRANSITION -> CTOL)
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Example #1: VSTOL aircraft

= A Common Lyapunov function guarantees stability for any switching
strategy

= Vertical Landing Maneuver: (TRANSITION -> VTOL)

Desired z Desired 3
s 16 eeees e L.

1500+

1000}

x,m)

500|-

: H : H : 3 4 : H :
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xErtor zEror 3 Error

0 20 40 60 0 20 40 60 0 20 40 60
t[sec] t[sec] tlsec]
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Example #2: 3-axle trailer

= Experimental truck and trailer ‘ﬁh’}:

= 1:16 scale model of commercial vehicles
= Unstable nonlinear dynamics
= Nonholonomic system (non-integrable constraints)
= Goal: back up along a specified path
= Control not possible with a single, nonlinear controller
= Hierarchical, hybrid system:
= Straight-line tracking controller (forwards and backwards)
= Arc-tracking controller E

= Linearize dynamics Trailer
around these motions

(x3.y3)
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Example #2: 3-axle trailer

= Straight line tracking

Trailer

p =vAp+ Ba
b= [y3; 037 ﬂSa 52]1- (o)

01 0 0 0
L 2A®)| oo /Ly 0 _0B(p.o)| 0
o o 00-1/Ly 1/Ly |~ o o0 =M,y /(L1 L)
00 0 —1/L, (Lo + My)/(L1 Ls)

= This mode is open-loop stable in forward motion (v > 0)

det (s —vA) = 5* (5 + LL—Z) (5 + Ll_j)

= But open-loop unstable in backwards motion (v < 0)
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Example #2: 3-axle trailer

= Arc-tracking

Trailer

p =vAp+ Ba
p=18s,52]" e

= With a non-zero equilibrium point,

M L "
(o = arctan (—1> + arctan (—2) , (3. = arctan <7—3)
T ro Ls

= The linearized dynamics are p = v(A(p — p.) + B(a — a.))
€08 3 €OS B3 €08 Bae | sinfacsin By My (sinfpe  cos [ sin Fsc tana
A= L3 Ly L3 Ly Lo L3 N

s 3 M,
0 7“;‘—225 (1 + L_11 tan (o, tan ue)

My [ cos [ac n sin g, sin 33, (1 + tan? 0()
L, Ls

1 M, : 9
L_l (1 + L_‘ZCDS ch) (1 + tan uc)

p=| I
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Example #2: 3-axle trailer

= Jack-knife configuration Dolly

Trailer

(Trailer cannot be pushed backwards)

= Constraints (o L i ,, i
[B2] < Bas = 0.6 rad,
|B3] < B3¢ = 1.3 rad

= Encode constraints into the domain, to ensure system is not
allowed to evolve into jack-knife situation

= | Goal: Design a switched controller
to move backwards along a
desired path, e.g, stabilize
tracking error
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L ] M - -
Example #2: 3-axle trailer Example #2: 3-axle trailer
D peECs
= Scenario 1: Two modes . = Scenario 2: Three modes T T
p - \ H/\(‘K\\/\\RI} )
- ) / \ . ) A //ALUNG \ \“’<RWARD\ \
= Switching surfaces C. N = Switching surfaces C, C,, | smuor | \ )
and C+ m | ‘h\\‘g Qr (1)> qj \;I //\ — //\,T,,/
QAIGHT pec b "" - | pec_ne |
. LINE - \ 6= . \ |
= Results in unacceptably |~ | = Choosing these surfaces \ /
slow convergence of | a4 is part of the control \ pels /
the state 65 (trailer =% " design problem (regions pew \ /
alignment) of attraction) \\ @};“;\R;’\
e
= Solution: Try adding a = Surfaces must be chosen \awer/ e
third mode, to improve | to satisfy conditions for | ‘K
alignment hybrid stability. N " |
pE C+ FORWARD \\\ / -
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Example #2: 3-axle trailer Example #3: Delta-Notch
= Initial conditions near the jack-knife scenario = Cell differentiation is process by which a group of cells initially
of homogenous composition becomes heterogeneous.
= Cell type is determined by genes, which determine
o Ve oo = Amount of protein produced
o / g oo e = Type of protein produced
5 % Eo s G in a given cell
oo S — = Proteins affect gene activity by
T e o = Turning “on” gene expression
a0 J oo = Turning “off” gene expression
g e P 7 E oo S = Feedback is an inherent part of the biological mechanism of cell
; |::: 3//‘/; § 0TI T s o e B d Iffel‘entlation
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Example #3: Delta-Notch

= “Delta” and “Notch” are two key proteins involved in cell
differentiation

= Inter-cellular signaling (within a single cell)
= Intra-cellular signaling (across neighboring cell boundaries)
= Experimentally observed “rules” of Delta-Notch interaction
= High Delta levels triggers production of Notch in neighboring cells
= Low Notch levels triggers production of Delta in the same cell
= High Delta levels produce differentiated cells
= Low Delta levels produce undifferentiated cells
= Delta and Notch decay exponentially
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Example #3: Delta-Notch

= Piecewise affine model
= Each cell can be in one of four modes
= Delta decaying, Notch decaying
= Delta produced, Notch decaying
= Delta decaying, Notch produced
= Delta produced, Notch produced
= The continuous state is the concentrations of Delta, Notch
(Vorv)
= Switching thresholds (hy, hy) trigger Delta, Notch production
= Inputs (up, uy) states in neighboring cells
= Constants
= Decay rates (Ap, Ay)
= Production rates (Ry, Ry)
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Example #3: Delta-Notch

= Hybrid automaton
Hy = (Q1,X1, 51, Vi, Inity, fi, Invy, Ry)
Q1 ={q1,2,93, 0}
X = (L’D,'L‘A')T € ]R2

6
o= {UD{UN Tup = —vy,uy = 'vb}

i=1
i=0

Init; = Q; x {Xl cR?:vp,un > 0}

[=Apvp; —Anun]" ifg=q

[Rp = Apvp; —Anen]” ifg=q

[=Apvp; Ry — Avun]” ifg=gs

[Rp = Apvp; Ry = Avon]” if g =

Invy = {q1, {up < hp,un < hy}}U{g,{up > hp,uny < hy}}
U{gs, {up < hp,un > hn}} U{qs, {up > hp,un > hy}}

flgr) =
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Example #3: Delta-Notch

= Hybrid automaton

[ Ry (q1, {up > hp Aun < hy}) € g2 x R?]
Ry ((]1, {’ll,D <hpAuy > }LN}) € g3 X ]R2
Ry(q,{up > hp Aun > hn}) € o x R?
Ry (g2, {up < hp Auy < hy}) € ¢ x R?
Ry (g2, {up < hp ANuy > hyx}) € g3 X R?
Ri(g2,{up > hp Aun > hn}) € o x R?
Ry (g3, {up <hp Aun < hy}) € ¢ x R?
Ry (g3, {up > hp Auy < hn}) € g2 x R?
Ry (g3, {up > hp Aun > hy}) € o x R*
Ry (q4, {'UD <hpAuy < hl\f}) cq X ]R2
Ry ((]1, {’ll,D >hp ANuy < }LN}) € qa X R?
| Ry (qa, {up < hp Aun > hy}) € g5 x R? |

Ry :
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Example #3: Delta-Notch

= Simulation based on experimentally determined constants

= Consistent with known data I e
Single \* /4 L")
Undifferentiated Cells Ceg” ‘\'\J/T
)/ 7\(\ O
[ a ) [ w )
A

o
Differentiated Cell
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Example #3: Delta-Notch

= Problem:
= What are the switching thresholds?
= What are the equilibria possible (besides experimentally known)?
= What initial conditions reach those equilibria?

= Special case: One cell

Sode Equilibriumn Existence condition Tabel
71 O<hpAuny <IN Jead cell
72 0> hp Aun < hy differentiated cell
Ry
q -5 < hp Aupy > hoy |undifferentiated cell
a3 i 'gf,e:' D N Z*N
a4 3L > hp Auy 2 hy| |confused” cell

= Provides constraints on thresholds for existence of biologically
meaningful equilibrium points
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Example #3: Delta-Notch

Example #3: Delta-Notch

= Special case: One cell

uy <hy

Lot ?

fefefede
whekekde
<
i
]
RARK KRR

AR

AR SRR

Y aha
MV 7T

Wifepete
VYV

5
b4

= Two biologically meaningful equilibria:
= Differentiated
= Undifferentiated
depending on whether uy < hy or uy > hy

= But this does not capture full behavior -- need more cells
interacting.
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= Special case: Two cells

= Only 6 out of 16 equilibria are
biologically feasible

= Only 2 of the remaining 6 are not
mutually exclusive

= Choosing

Lp
Ap

enables the two possible equilibria
in the 2-cell automaton

hp,hy : —? <hp <OAO<hy<
N

= Larger NxN cell array requires more
robust analysis (model checking)
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Summary

= Review of the main Lyapunov theorems so far

= Examples of hybrid systems
= Stabilizing a VSTOL aircraft
= Backing up a tractor-trailer
= Biological circuits

= Next few classes:
= Discrete-time piecewise affine Lyapunov theorems
= Polynomial dynamics and Sum-of-squares Lyapunov functions
= Special cases of common Lyapunov functions
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