EECE 571M/491M, Spring 2008 Lecture 9

Review and Examples: Linear Quadratic Lyapunov Theory

Meeko Oishi, Ph.D.

Electrical and Computer Engineering

University of British Columbia, BC

http://courses.ece.ubc.ca/491m moishi@ece.ubc.ca

Johansson and Rantzer (1998), DeCarlo et al (2000)

1

Review

Three major theorems for hybrid systems:

- Multiple Lyapunov Function
 - General nonlinear dynamics, non-identity reset map
- Globally Quadratic Lyapunov Function (a type of Common Lyapunov Function)
 - Linear dynamics, quadratic Lyapunov function
 - Identity reset map
 - SAME Lyapunov function must hold in ALL modes for ALL states (not just in domain)
- Piecewise Quadratic Lyapunov Function
 - Linear dynamics, quadratic Lyapunov function
 - Identity reset map
 - Potentially DIFFERENT Lyapunov functions in every mode, must hold only for states the DOMAIN of each particular mode.

EECE 571M / 491M Spring 2008

2

Consider a Lyapunov-like function V(q,x):

- When the system is evolving in mode q, V(q,x) must decrease or maintain the same value
- Every time mode q is re-visited, the value V(q,x) must be lower than it was last time the system entered mode q.
- When the system switches into a new mode q', V may jump in value
- For inactive modes p, V(p,x) may increase
- Requires solving for V directly $\downarrow_{V(q,x)}$

Preview

What's next:

- Return to Common Lyapunov Function
 - Classes of systems for which GQLFs are known to exist
 - Classes of systems for which GQLFs are known NOT to exist
- Switching control
 - How to use Lyapunov functions to synthesize a switching controller for stability
- Gain scheduling as hybrid control
- Chattering

Example #1: VSTOL aircraft

VTOL: Vertical Take-Off/Landing

- Thrust is 90⁰ from horizontal
- Nonlinear dynamics

- Closed-loop dynamics "linearized" by nonlinear control law which tracks desired trajectories in (x, z) (assuming ϵ = 0)
- Resulting error dynamics satisfy

 $M\left[\begin{array}{c} \ddot{x}\\ \ddot{z} \end{array}\right] = R(\theta) \left[\begin{array}{c} 0\\ T - \epsilon u_2 \end{array}\right] - \left[\begin{array}{c} 0\\ Mg \end{array}\right]$

$$\dot{e} = Ae, \text{ where} \\ A = \text{diag}\{A_1, A_2\}$$

$$A_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\alpha_0^1 & -\alpha_1^1 & -\alpha_2^1 & -\alpha_3^1 \end{bmatrix} A_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\alpha_0^2 & -\alpha_1^2 & -\alpha_2^2 & -\alpha_3^2 \end{bmatrix}$$

• With constants chosen by placing closed-loop poles at $\lambda_e = 1.3$,

$$(s + \lambda_e)^4 = s^4 + \alpha_3 s^3 + \alpha_2 s^2 + \alpha_1 s + \alpha_0$$

EECE 571M / 491M Spring 2008

Example #1: VSTOL aircraft

CTOL: Conventional Take-Off/Landing

- Thrust is 0⁰ from horizontal
- Nonlinear dynamics

$$M\begin{bmatrix} \ddot{x}\\ \ddot{z} \end{bmatrix} = R(\theta) \left(R^T(\alpha) \begin{bmatrix} -D\\ L \end{bmatrix} + \begin{bmatrix} T\\ -\epsilon u_2 \end{bmatrix} \right) - \begin{bmatrix} 0\\ Mg \end{bmatrix}$$

- Closed-loop dynamics "linearized" by nonlinear control law which tracks desired trajectories in (x, z) (assuming $\epsilon = 0$)
- Resulting error dynamics satisfy

• With constants chosen to place closed-loop poles at $\lambda_e = 1.3$, $(s + \lambda_e)^4 = s^4 + \alpha_3 s^3 + \alpha_2 s^2 + \alpha_1 s + \alpha_0$

11

- A Common Lyapunov function guarantees stability for **any** switching strategy
- Short Take-off Maneuver: (TRANSITION -> CTOL)

Example #1: VSTOL aircraft

- A Common Lyapunov function guarantees stability for **any** switching strategy
- Vertical Landing Maneuver: (TRANSITION -> VTOL)

12

Example #3: Delta-Notch

- "Delta" and "Notch" are two key proteins involved in cell differentiation
 - Inter-cellular signaling (within a single cell)
 - Intra-cellular signaling (across neighboring cell boundaries)
- Experimentally observed "rules" of Delta-Notch interaction
 - High Delta levels triggers production of Notch in neighboring cells
 - Low Notch levels triggers production of Delta in the same cell
 - High Delta levels produce differentiated cells
 - Low Delta levels produce undifferentiated cells
 - Delta and Notch decay exponentially

Example #3: Delta-Notch

- Piecewise affine model
- Each cell can be in one of four modes
 - Delta decaying, Notch decaying
 - Delta produced, Notch decaying
 - Delta decaying, Notch produced
 - Delta produced, Notch produced
- The continuous state is the concentrations of Delta, Notch $\left(v_{\text{D}},v_{\text{N}}\right)$
- Switching thresholds (h_D, h_N) trigger Delta, Notch production
- Inputs (u_D, u_N) states in neighboring cells
- Constants

EECE 571M / 491M Spring 2008

- Decay rates (λ_D, λ_N)
- Production rates (R_D, R_N)

EECE 571M / 491M Spring 2008

21

UBC

Example #3: Delta-Notch

Hybrid automaton

Example #3: Delta-Notch

Hybrid automaton

$$R_{1} : \begin{bmatrix} R_{1} \left(q_{1}, \{u_{D} \ge h_{D} \land u_{N} < h_{N} \} \right) \in q_{2} \times \mathbb{R}^{2} \\ R_{1} \left(q_{1}, \{u_{D} < h_{D} \land u_{N} \ge h_{N} \} \right) \in q_{3} \times \mathbb{R}^{2} \\ R_{1} \left(q_{1}, \{u_{D} \ge h_{D} \land u_{N} \ge h_{N} \} \right) \in q_{4} \times \mathbb{R}^{2} \\ R_{1} \left(q_{2}, \{u_{D} < h_{D} \land u_{N} \ge h_{N} \} \right) \in q_{4} \times \mathbb{R}^{2} \\ R_{1} \left(q_{2}, \{u_{D} < h_{D} \land u_{N} \ge h_{N} \} \right) \in q_{3} \times \mathbb{R}^{2} \\ R_{1} \left(q_{2}, \{u_{D} \ge h_{D} \land u_{N} \ge h_{N} \} \right) \in q_{4} \times \mathbb{R}^{2} \\ R_{1} \left(q_{3}, \{u_{D} \ge h_{D} \land u_{N} \ge h_{N} \} \right) \in q_{4} \times \mathbb{R}^{2} \\ R_{1} \left(q_{3}, \{u_{D} \ge h_{D} \land u_{N} < h_{N} \} \right) \in q_{2} \times \mathbb{R}^{2} \\ R_{1} \left(q_{3}, \{u_{D} \ge h_{D} \land u_{N} < h_{N} \} \right) \in q_{4} \times \mathbb{R}^{2} \\ R_{1} \left(q_{3}, \{u_{D} \ge h_{D} \land u_{N} < h_{N} \} \right) \in q_{4} \times \mathbb{R}^{2} \\ R_{1} \left(q_{4}, \{u_{D} < h_{D} \land u_{N} < h_{N} \} \right) \in q_{1} \times \mathbb{R}^{2} \\ R_{1} \left(q_{4}, \{u_{D} \ge h_{D} \land u_{N} < h_{N} \} \right) \in q_{2} \times \mathbb{R}^{2} \\ R_{1} \left(q_{4}, \{u_{D} \ge h_{D} \land u_{N} < h_{N} \} \right) \in q_{3} \times \mathbb{R}^{2} \end{cases}$$

EECE 571M / 491M Spring 2008

22

- Simulation based on experimentally determined constants
- Consistent with known data

Example #3: Delta-Notch

- Problem:
 - What are the switching thresholds?
 - What are the equilibria possible (besides experimentally known)?
 - What initial conditions reach those equilibria?
- Special case: One cell

Mode	Equilibrium	Existence condition	Label
q_1	$v_D^* = 0, v_N^* = 0$	$0 < h_D \wedge u_N < h_N$	dead cell
q_2	$v_D^* = \frac{R_D}{\lambda_D}, v_N^* = 0$	$0 \geq h_D \wedge u_N < h_N$	differentiated cell
q_3	$v_D^* = 0, v_N^* = \frac{R_N}{\lambda_N}$	$-\frac{R_N}{\lambda_N} < h_D \wedge u_N \ge h_N$	undifferentiated cell
q_4	$v_D^* = \frac{R_D}{\lambda_D}, v_N^* = \frac{R_N}{\lambda_N}$	$-\frac{R_N}{\lambda_N} \ge h_D \wedge u_N \ge h_N$	"confused" cell

 Provides constraints on thresholds for existence of biologically meaningful equilibrium points

EECE 571M / 491M Spring 2008

26

- Special case: Two cells
- Only 6 out of 16 equilibria are biologically feasible
- Only 2 of the remaining 6 are not mutually exclusive
- Choosing

$$h_D, h_N : -\frac{R_N}{\lambda_N} < h_D \le 0 \land 0 < h_N \le \frac{R_D}{\lambda_D}$$

 Larger NxN cell array requires more robust analysis (model checking)

EECE 571M / 491M Spring 2008

- Review of the main Lyapunov theorems so far
- Examples of hybrid systems
 - Stabilizing a VSTOL aircraft
 - Backing up a tractor-trailer
 - Biological circuits
- Next few classes:
 - Discrete-time piecewise affine Lyapunov theorems
 - Polynomial dynamics and Sum-of-squares Lyapunov functions
 - Special cases of common Lyapunov functions

EECE 571M / 491M Spring 2008

29