EECE 571M/491M, Spring 2008 Lecture 12

Piecewise Quadratic Optimal Control

Meeko Oishi, Ph.D.

Electrical and Computer Engineering

University of British Columbia, BC

http://courses.ece.ubc.ca/491m moishi@ece.ubc.ca

Rantzer and Johansson (2000), Lazar, Bemporad et al. (2006)

1

Today's lecture

- Background
 - Optimal control for continuous linear systems (VERY cursory!)
- Literature survey and related topics
- Bounds on optimal costs
 - Johansson and Rantzer
 - Lincoln and Rantzer
 - Hedlund and Rantzer
- Stabilizing MPC
 - Lazar, Heemels, Weiland, and Bemporad
 - Bemporad, Borrelli, Morari

EECE 571M / 491M Winter 2007

Linear Quadratic Optimal Ctrl

- Note: This is a very cursory look at a deep topic. Focus here is on summarizing most relevant results.
- For more information
 - R. Stengel, 1994.
 - Bertsekas, 1995.
- Optimal controls course, P. Loewen, Math, UBC

- S. Hedlund and A. Rantzer, CDC 1999.
 - Nonlinear; fixed initial and final modes and states; unknown sequences
- M. Johansson and A. Rantzer, TAC 2000.
 - Piecewise linear quadratic systems
- B. Lincoln and A. Rantzer, TAC 2002.
 - Relaxed dynamic programming
- A. Bemporad, F. Borelli, M. Morari, Automatica 2002.
 - Discrete-time mixed-logical dynamical systems
- M. Lazar, P. Heemels, S. Weiland, A. Bemporad, TAC 2006.
 - (Stabilizing) model predictive control for switched systems
- X. Xu and P. Antsaklis, TAC 2004.
 - Order of switching sequence known
 - Timing and continuous control input unknown
- M. Boccadoro, Y. Wardi, M. Egerstedt, E. Verriest, 2005.
- Parameterization of switching surfaces
- Many others...

EECE 571M / 491M Winter 2007

2

- A variety of formulations of optimality problems exist.
- Switched systems:
 - Optimal switching sequence (modes and switching times)
 - Optimal continuous control within each mode
- Brute-force computations lead to combinatorial explosions in the exploration of all switching alternatives
- Continuous-time vs. discrete-time
- Solution construction vs. bounds

EECE 571M / 491M Winter 2007

5

7

Theorem: Lower bound on optimal cost

Theorem 2 (Lower Bound on Optimal Cost): Assume existence of symmetric matrices T and U_i , such that U_i have non-negative entries, while $P_i = F'_i TF_i$ and $\overline{P}_i = \overline{F}'_i T\overline{F}_i$ satisfy

$$\begin{split} 0 < \begin{bmatrix} P_i A_i + A_i' P_i + Q_i - E_i' U_i E_i & P_i B_i \\ B_i' P_i & R_i \end{bmatrix} & i \in I_0 \\ 0 < \begin{bmatrix} \overline{P_i \overline{A}_i + \overline{A}_i' \overline{P}_i + \overline{Q}_i - \overline{E}_i' U_i \overline{E}_i & \overline{P}_i \overline{B}_i \\ \overline{B_i' \overline{P}_i} & R_i \end{bmatrix} & i \in I_1. \end{split}$$

Then, every continuous piecewise \mathcal{C}^1 trajectory $x(t) \in \bigcup_{i \in I} X_i$ of (1) with $x(\infty) = 0, x(0) = x_0 \in X_{i_0}$ satisfies

$$J(x_0, u) \ge \sup_{T, U_i} \overline{x}'_0 \overline{P}_{i_0} \overline{x}_0.$$

From Rantzer and Johansson, TAC 2000.

EECE 571M / 491M Winter 2007

Consider PWA systems with the following minimization problem

Minimize
$$\int_{0}^{\infty} l(x, u) dt$$

subject to
$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ x(0) = x_{0}. \end{cases}$$

- Goal: Determine lower bound on optimal cost
- "Optimal" control law can be synthesized based on this result
- Further work must be done to find an upper bound

EECE 571M / 491M Winter 2007

From Rantzer and Johansson, TAC 2000.

UBC

Piecewise LQR

- This bound is based on a non-optimal value function V(x)
- A control law which satisfies

$$\min_u \left(\frac{\partial V}{\partial x} \, f(x,u) + l(x,u) \right)$$

will achieve the sub-optimal cost $J(x_0, u)$.

$$L_i = -R_i^{-1}B'_iP_i$$
$$\overline{L}_i = -R_i^{-1}\overline{B}'_i\overline{P}_i$$
$$u(t) = \overline{L}_i\overline{x}, \qquad x \in X_i$$

EECE 571M / 491M Winter 2007

From Rantzer and Johansson, TAC 2000.

6

- Model Predictive Control
- MPT (Multi-Parametric Toolbox) computes
 - Terminal state constraints to ensure stability
 - Optimal, stabilizing control law
 - Optimal cost
- Equivalence to mixed logical dynamical systems
- Predicted outputs Manipulated u(t+k)Inputs t+nt+1t+2 t+p+1
- Mixed integer quadratic program (MIQP)

Image from http://www.dii.unisi.it/~bemporad/mpc.htm, A. Bemporad

EECE 571M / 491M Winter 2007

11

- 3D PWA system with state-space partition $x_{k+1} = A_j x_k + B_j u_k$, if $x_k \in \Omega_j$, j = 1, 2, 3, 4 $x_k \in \mathbb{X} = [-5,5]^3$ $u_k \in \mathbb{U} = [-2.5,2.5]$
 - $Q = 0.02I_3$ and R = 0.01
- Solution: Optimal control laws

 $K_1 = \begin{bmatrix} 0.4699 & 0.1750 & 0.1591 \end{bmatrix}$ $K_2 = \begin{bmatrix} 0.4039 & 0.4239 & 1.1529 \end{bmatrix}$ $K_3 = \begin{bmatrix} -0.7742 & -0.1436 & -0.1603 \end{bmatrix}$ $K_4 = \begin{bmatrix} -0.0800 & -0.0405 & -0.2867 \end{bmatrix}.$

From Lazar, Heemels, Weiland, and Bemporad, TAC 2006 EECE 571M / 491M Winter 2007 12

• 3D PWA system with state-space partition (left)

From Lazar, Heemels, Weiland, and Bemporad, TAC 2006 EECE 571M / 491M Winter 2007 13

Summary

- Optimization of PWA systems with quadratic costs
 - Lower bounds through simple LMIs (Johansson and Rantzer)
 - Relaxed dynamic programming (Lincoln, Hedlund, and Rantzer)
 - Stabilizing MPC (Bemporad, Borelli, Morari, and others)
- Optimization of switching instants and sequences
 - Two-step process (Xu and Antsaklis)
 - Parameterization (Egerstedt, Wardi, and others)
- Very active area of research

EECE 571M / 491M Winter 2007

14