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Today'’s lecture

= Background
= Optimal control for continuous linear systems
(VERY cursory!)

= Literature survey and related topics

= Bounds on optimal costs
= Johansson and Rantzer
= Lincoln and Rantzer
= Hedlund and Rantzer
= Stabilizing MPC
= Lazar, Heemels, Weiland, and Bemporad
= Bemporad, Borrelli, Morari
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Linear Quadratic Optimal Ctrl

= Note: This is a very cursory look at a deep topic.
Focus here is on summarizing most relevant results.

= For more information
= R. Stengel, 1994.
= Bertsekas, 1995.

= Optimal controls course, P. Loewen, Math, UBC
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Current research

= S. Hedlund and A. Rantzer, CDC 1999.
= Nonlinear; fixed initial and final modes and states; unknown sequences
= M. Johansson and A. Rantzer, TAC 2000.
= Piecewise linear quadratic systems
= B. Lincoln and A. Rantzer, TAC 2002.
= Relaxed dynamic programming
= A. Bemporad, F. Borelli, M. Morari, Automatica 2002.
= Discrete-time mixed-logical dynamical systems
= M. Lazar, P. Heemels, S. Weiland, A. Bemporad, TAC 2006.
= (Stabilizing) model predictive control for switched systems
= X. Xu and P. Antsaklis, TAC 2004.
= Order of switching sequence known
= Timing and continuous control input unknown
= M. Boccadoro, Y. Wardi, M. Egerstedt, E. Verriest, 2005.
= Parameterization of switching surfaces
= Many others...
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Piecewise LQR

= A variety of formulations of optimality problems exist.

= Switched systems:
= Optimal switching sequence (modes and switching times)
= Optimal continuous control within each mode

= Brute-force computations lead to combinatorial explosions in the
exploration of all switching alternatives

= Continuous-time vs. discrete-time

= Solution construction vs. bounds
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Piecewise LQR

= Consider PWA systems with the following minimization problem

Minimize / V U, w)dt
0

subject to { ig(?) =: J; :E;f"(t)' u(t))

= Goal: Determine lower bound on optimal cost

= "Optimal” control law can be synthesized based on this result

= Further work must be done to find an upper bound

From Rantzer and Johansson, TAC 2000.
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Piecewise LQR

= Theorem: Lower bound on optimal cost

Theorem 2 (Lower Bound on Optimal Cost): Assume exis-
tence of symmetric matrices 1" and U/;, such that {/; have non-
negative entries, while /% = I{TI; and P; = I/TF; satisfy

PA;+ A;-Pg +Q; - E;L",:E,' P.B; .

0< [ B.P, R tely
Fiji + I/LPI + al - E“QE, P;E; .

0< [ F:Fl Rl 1€ _/1.

Then, every continuous piecewise C* trajectory x(t) € Uics X
of (1) with z(o0) = 0, z(0) = xg € X, satisfies

I, u) 2 sup T Pi, To.

From Rantzer and Johansson, TAC 2000.
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Piecewise LQR

= This bound is based on a non-optimal value function V(x)
= A control law which satisfies
. (OV
min (I flw,w) + (x, u))
will achieve the sub-optimal cost J(x,, u).

Li= - R7'B.P,

L;= - R7'B.P;
u(t) = L;T, zeX;

From Rantzer and Johansson, TAC 2000.
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UBC
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Discrete-time piecewise LQR

= Alternative way to solve for optimal cost: Relaxed dynamic
programming (Lincoln, Rantzer, 2003)

= Instead of solving dynamic program exactly, solve the
inequalities
min{V(f(x,u)) +L(x,u)} <V(x) <
muin{V (f (x.u)) +1(x, u)}

= Discrete-time formulation
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UBC
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Discrete-time piecewise LQR

= Example of a solution:

y V(x)//

2.2 s //,/lf (x) /”
2 - — -
N
o . V(%)
& 05 [ 05 1

= Example of a problem:
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From Lincoln and Rantzer, CDC 2003
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&% Optimization through MPC

= Model Predictive Control
= MPT (Multi-Parametric
Toolbox) computes o

= Terminal state constraints
to ensure stability

= Optimal, stabilizing control
law

= Optimal cost
= Equivalence to mixed | |
logical dynamical systems Pharees thp+i
= Mixed integer quadratic
program (MIQP)

Predicted outputs

| Ivanipulated (k] i

Inputs

l; 7 tp

Image from http://www.dii.unisi.it/~bemporad/mpc.htm,
A. Bemporad
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UBC
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&) Optimization through MPC

= 3D PWA system with state-space partition
Th1 = Ajar + Bjug, it v, €Q;, j=1.2,3.4
v € X = [-5,5)° ur € U = [—23 25]
@ = 0.02I3 and R = 0.01

= Solution: Optimal control laws

Ky =[0.4699 0.1750 0.1591]
K, =[0.4039 0.4239 1.1529]
K3 =[-0.7742 —0.1436 - 0.1603]
K4 =[-0.0800 —0.0405 — 0.2867].

From Lazar, Heemels, Weiland, and Bemporad, TAC 2006
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Optimization through MPC

= 3D PWA system with state-space partition (left)
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= Computed optimal trajectory with computed terminal state set
(right)

From Lazar, Heemels, Weiland, and Bemporad, TAC 2006
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Summary

= Optimization of PWA systems with quadratic costs
= Lower bounds through simple LMIs (Johansson and Rantzer)
= Relaxed dynamic programming (Lincoln, Hedlund, and Rantzer)
= Stabilizing MPC (Bemporad, Borelli, Morari, and others)

= Optimization of switching instants and sequences
= Two-step process (Xu and Antsaklis)

= Parameterization (Egerstedt, Wardi, and others)

= Very active area of research
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