

Systems
Engineering

FOR

DUMmIES
‰

IBM LIMITED EDITION

Cathleen Shamieh

Barclay Brown
Global Solution Executive
IBM Software, Rational

Greg Gorman
Program Director, Systems
Engineering Solutions
IBM Software, Rational

Hans-Peter Hoffmann, Ph.D.
Chief Systems Methodologist
IBM Software, Rational

Brian T. Nolan, Ph.D.
Go To Market Manager,
Aerospace & Defense
IBM Software, Rational

Steve Shoaf
Go To Market Manager,
Systems Engineering
IBM Software, Rational

With contributions from:

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies,® IBM Limited Edition
Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest
of Us!, The Dummies Way, Dummies.com, Making Everything Easier, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETE-
NESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITU-
ATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PRO-
FESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRIT-
TEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our
Business Development Department in the U.S. at 317-572-3205. For details on how to
create a custom For Dummies book for your business or organization, contact info@
dummies.biz. For information about licensing the For Dummies brand for products or
services, contact BrandedRights&Licenses@Wiley.com.
ISBN: 978-1-118-24414-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Publisher’s Acknowledgments
We’re proud of this book and of the people who worked on it. For details on how to
create a custom For Dummies book for your business or organization, contact info@
dummies.biz. For details on licensing the For Dummies brand for products or ser-
vices, contact BrandedRights&Licenses@Wiley.com.
Some of the people who helped bring this book to market include the following:
Acquisitions, Editorial, and
Media Development

Project Editor: Carrie A. Burchfield
Editorial Manager: Rev Mengle
Sr. Acquisitions Editor: Katie Feltman
Business Development Representative:

Sue Blessing
Custom Publishing Project Specialist:

Michael Sullivan

Composition Services

Sr. Project Coordinator: Kristie Rees
Layout and Graphics: Carrie A. Cesavice,

Melanee Habig, Lavonne Roberts
Proofreader: Jessica Kramer

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Director, Acquisitions
Mary C. Corder, Editorial Director

Publishing and Editorial for Consumer Dummies

Kathleen Nebenhaus, Vice President and Executive Publisher
Composition Services

Debbie Stailey, Director of Composition Services
Business Development

Lisa Coleman, Director, New Market and Brand Development

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Contents at a Glance
Introduction .1

Chapter 1: Generating Smarter Products 3

Chapter 2: Taming the Tiger with
Systems Engineering .13

Chapter 3: Revolutionizing Requirements 23

Chapter 4: Getting Abstract with System Modeling . . .35

Chapter 5: Ensuring Tip-Top Quality 43

Chapter 6: Enabling Large Teams to Collaborate
and Manage Changes .51

Chapter 7: Ten Ways to Win with
Systems Engineering .61

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

S
mart products are everywhere. They track your pack-
ages, control traffic lights, fly aircraft, and guide you to

your destination. They’re at the heart of the systems and ser-
vices you use every day — from smartphones to smart cars,
to medical systems, and to aerospace and defense systems.

Intelligent, instrumented, and interconnected products are
revolutionizing the way we interact with each other and per-
form everyday tasks. Through a combination of electronics,
software, sensors, and other hardware, we have the technol-
ogy to create multifunctional customized products. And with
our unlimited imaginations, we have the potential to define
hundreds of innovative, value-driven, and personalized sys-
tems and services.

The real challenge in creating smart products is one of orga-
nization: how can we effectively and efficiently integrate a
complex combination of technologies to create an intelligent
“system of systems” that fulfills its promises and lives up to
its potential? The solution lies with systems engineering.

Systems Engineering For Dummies, IBM Limited Edition,
explains what systems engineering is and how it can help you
harness the complexity inherent in developing smart, con-
nected products. If you’re looking for ways to expedite time-
to-market, ensure business agility, and deliver high-quality
smart products while cutting costs, Systems Engineering For
Dummies, IBM Limited Edition, is the book for you.

How This Book Is Organized
The seven chapters in this book are geared to help you under-
stand the problem that systems engineering aims to solve
and all the steps involved in solving it. Here’s an overview of
what’s inside:

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 2
 ✓ Chapter 1 explains what smart products are and why

they warrant a new approach to systems development.

 ✓ Chapter 2 provides a high-level overview of systems
engineering.

 ✓ Chapter 3 lays out the critical role requirements play
throughout the systems development cycle.

 ✓ Chapter 4 shows you how models can enhance your
understanding of system structure and behavior.

 ✓ Chapter 5 explains how to make sure you build the
right system (validation) and build the system right
(verification).

 ✓ Chapter 6 suggests ways to enhance collaboration among
development teams.

 ✓ Chapter 7 provides a look at some real-world companies
that have incorporated systems engineering into their
core business practices.

Icons Used In This Book
As you read this book, you’ll notice several eye-catching icons
designed to highlight special information.

This icon alerts you to key concepts you might want to
commit to memory.

This icon appears next to actionable suggestions that are
meant to make your life a lot easier.

These are the opposite of tips. They’re suggestions that, if
ignored, are bound to make your life a lot harder.

I realize that you don’t necessarily need to know everything I
do, so this icon tells you a little more detail than is absolutely
necessary, so you can skip it if you like.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

Generating Smarter
Products

In This Chapter
▶ Dealing with the demand for intelligent, interconnected systems
▶ Recognizing challenges on the road to success
▶ Shifting gears to encompass a broader landscape

P
icture this: As you back down your driveway, your car
sends a signal to your home to arm the alarm system

and close the garage door. Your cell phone automatically
synchronizes with your car’s voice command system, and the
built-in global positioning system (GPS) analyzes live traffic
patterns and suggests a time-saving alternate route to work.
Your car announces it’s due for an oil change, checks your
schedule on your smartphone, suggests possible appointment
times, and offers to initiate a call to your favorite service sta-
tion. Your car can even inform you of potential flooding condi-
tions expected during your commute home.

Is it possible that a vehicle that was once known as a “horse-
less carriage” could be so incredibly smart and helpful?
Absolutely!

In this chapter, you discover what makes smart products tick,
how they collaborate with each other, and why you should
adopt new business processes for developing them.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 4

What’s So Smart about
Smart Products?

Smart products are all the rage nowadays. It’s hard to imag-
ine life before programmable kitchen appliances, interactive
video games, and multitasking cell phones that record videos,
print pictures, surf the web, and play music. Aircraft can find
their way while avoiding collisions, and we count on intelligent
drones and other precision defense systems to keep us safe.

Just what is it that makes these and other inanimate objects
so capable of performing such amazing feats?

Delivering value with smart systems
Intelligent, software-driven systems
are popping up all over the ecosystem:

 ✓ Healthcare: Custom software
provides reliable, secure access
to complex medical images
and reports via mobile devices,
enabling medical professionals
to review patient information on
the go and expedite emergency
diagnoses.

 ✓ Utilities: Bi-directional com-
munication between energy
suppliers and consumers over
a “smart grid” facilitate intel-
ligent control of energy usage.
For instance, washing machines
can be turned on by the grid
when power is least expensive,
and selected appliances can
be turned off during peak usage
intervals. Smart cars are another
example in this area.

 ✓ Intelligent appliances: Connected
home appliances provide status
updates on energy usage through
intuitive user interfaces. Remote
control of these appliances
enables consumers to achieve
desired comfort levels while
reducing energy consumption.

 ✓ Entertainment: Smart TVs pro-
vide wireless Internet access,
enabling consumers to rent
movies, shop, check the weather,
set up customized news pages,
and download apps.

 ✓ Automotive: Smart collision
avoidance systems integrate
differential GPS technology,
wireless communication, and in-
vehicle graphical displays to alert
drivers to nearby vehicles and
even take emergency evasive
action.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: Generating Smarter Products 5

Blending technological ingredients
Today’s smarter products and services are the result of the
convergence of manufacturing, electronics, and information
technologies. Quick-thinking manufacturers realized that they
could take advantage of the tremendous advances in microelec-
tronics, software, mechanical devices, sensors, and actuators
to create products that would wow their customers — and
wallop their competitors. So they grabbed a little bit o’ this and
a little bit o’ that, mixed it all together (with some help from
their engineering friends), and — voilà— cooked up products
that even George Jetson would find innovative!

Smart products come in all shapes and sizes, but generally
speaking, they’re characterized by these three adjectives:

 ✓ Instrumented: Smart products sport devices, such as
cameras; motion detectors; position sensors; wireless
receivers; sound, heat, and light humidity; and magnetic
fields, which constantly monitor their own operation and
sniff out the neighborhood around them. By establishing
context in this way, smart products can adapt to their
environment in real time.

 ✓ Interconnected: When two or more products interact with
each other and share information, they can deliver value
that extends beyond the capabilities of each individual
product. Connect them to the Internet and back-office or
other IT systems, and the sky’s the limit!

 ✓ Intelligent: Using sensory data, historical trends, and
user profile information, well-designed products can
make predictions, optimize outputs, and customize the
user experience.

Weaving it all together
with software
There’s no question that the single most important driver of
the smart product revolution is the phenomenal growth of
processing power. As the brains behind every smart product,
embedded microprocessors run algorithms, analyze data,
perform heavy-duty number crunching, and control all the
mechanical and electronic components of a smart product.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 6
In order to get the job done, microprocessors run thousands —
sometimes millions — of lines of software code. For instance,
today’s top-of-the-line cars contain dozens of microprocessors
that maybe run 100 million lines of code — for the express
purpose of delivering 250 to 300 functions to drivers and
passengers.

As semiconductor manufacturers keep churning out more and
more powerful microprocessors, the opportunity for software
developers to create new-fangled whiz-bang functionality is
skyrocketing. That’s a good thing — because much of the
hardware that differentiated products is quickly becoming
commoditized. More and more often it’s software, rather than
electronics, that makes a product stand out and determines
which products win market share.

The inherent flexibility of software offers loads of opportunity
to develop additional features and functions, enabling manu-
facturers to upgrade their products to meet customer expec-
tations of novelty. For instance, today’s leading MP3 players
do much more than just play music; they host music librar-
ies, stream video, support messaging, provide games, and
run third-party applications. The best products can be easily
updated to add functionality so they keep pace with changes
in the market.

Going viral with open standards

By 2013, there will be a mind-boggling 1.2 billion connected
consumer electronic devices sitting in 800 million homes that
have broadband access. If you have some good ideas about
offering value-added services to customers via the Internet,
you’re probably salivating at these numbers.

Imagine if all electronic devices were created in a vacuum,
with each manufacturer developing its own way to connect to
the Internet and communicate with the outside world. There
may be a lot of chatter on the lines, but none of it would be
useful. What a waste of an opportunity!

Not to worry! Some really smart people with great visions of
the future came up with the idea to create open standards, or
agreed-on ways of sending messages between devices and
service providers. The more companies that choose to use
the communications protocols defined by open standards,

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: Generating Smarter Products 7
the more opportunity there is for everyone. The population
is quickly evolving toward an “Internet of things” — a global
ecosystem of smart, connected products and services.

Catering to Customers
A sizable chunk of the world’s population consists of experi-
enced users of smart products.

In 2010 alone, roughly 40 million personal navigation devices
were sold throughout the world, and in 2008, over 55 million
people snatched up iPods.

If you’re a frequent flyer, you don’t fret if the weather turns
ugly during a cross-country flight because you know the air-
plane you’re flying on is equipped with smarts that ensure
your safe passage. Savvy users are well aware of the capabili-
ties of today’s smart products — and are driving demand for
even smarter ones.

Today’s customers are demanding reliable, real-time, interac-
tive products — and they want them now! And if you’re lucky
(and smart) enough to deliver on time, don’t rest yet, because
before you know it, your customers will already be expecting
an upgrade!

By incorporating personalization and integration capabili-
ties into your designs, you create products that cater to the
user’s individual needs and adapt to the user’s environment.
Customers want products that promise to make their lives
easier and more enjoyable, yet each of them has a unique way
of getting things done, and a distinct set of values, pet peeves,
and idiosyncrasies. Customers want smart products as easy
to customize as downloading the latest smartphone app!

Realizing that Smart Products
are not Islands

You may realize that it’s no longer enough to create a really
cool, feature-rich, stand-alone product. Today’s smart prod-
ucts must know enough to interact with other smart products.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 8
For example, take a look at a modern car (see Figure 1-1). A
typical top-of-the-line car contains a whole slew of sophisti-
cated software-intensive subsystems designed to make driv-
ing fun while improving safety and optimizing fuel efficiency:
anti-lock brakes, collision avoidance, comfort controls, secu-
rity, and much more. Designing and building a smart car —
which is really a “system of systems” — involves the complex
integration of mechanical, electrical, and electronic compo-
nents, not to mention the proper execution of about, oh, say,
100 million lines of code.

To complicate things even more, smart cars also interact
with several other systems external to the car itself. Location-
based services, vehicle diagnostic systems, and hybrid/elec-
trical recharging systems are just a few of many systems a car
may interact with in a larger automotive ecosystem.

If it sounds complicated, it is! But it’s also incredibly useful.
For instance, if your car’s security system is engineered to
interact with emergency response centers, it can deliver
accident details to first responders based on data collected
from sensors within the car. Critical details, such as force
of impact, can assist a 911 operator in determining the most
appropriate rescue resources to dispatch.

Adaptive cruise
control

Hybrid & electric
vehicle control

360–degree
surround vision

Intelligent
navigation

Fleet & traf�c
management

systems

Smart grid
hybrid/electric

vehicle recharging

Emergency services,
vehicle diagnostics,

GPS/location services

Predictive collision
avoidance

Driver assisted
safety alarms

Software-intensive
subsystems

System of Systems

Integration of mechanical,
electronic, software, and
electrical engineering

Figure 1-1: A smart car is a system of systems within a larger ecosystem.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: Generating Smarter Products 9

Often, the most valuable features of a smart product aren’t
contained entirely within that product itself but are delivered
as a result of interactions with other products or services
within an ecosystem. Just like people, smart products need to
collaborate and share information!

Just because you can share data doesn’t mean you should!
Privacy, security, and regulations (among other things) may
have major impacts on your design!

Identifying New and
Exciting Challenges

Developing a successful smart product that offers a personal-
ized experience to a diverse assortment of fickle, demanding
customers who wanted it done yesterday is, well, far from
easy. You may be a revered expert in your chosen field, des-
perately trying to come to terms with the fact that neither
your elite education nor your vast experience has prepared
you for the enormous challenge you face today.

Before you head for the hills, in order to develop successful
smart products, address the specific issues:

 ✓ Mastering multiple capabilities: You need expertise in
multiple technical fields, including manufacturing, elec-
tronics, mechanical engineering, and software engineering.
While most companies are strong in one or two of these
areas, this expertise is rare to find all under one roof.

 ✓ Becoming a world-class software house: If you’re a prod-
uct manufacturer who considers software a necessary
evil, you’d better start going to hypnosis, because most
of the “smarts” in smart products come from software —
and it doesn’t code itself (not yet, anyway).

 ✓ Integrating hardware and software development
efforts: As software-driven functionalities take center
stage, you have to get your hardware and software teams
to really work together — not just throw finished mod-
ules over the wall for integration and testing.

 ✓ Effectively managing distributed teams: If your develop-
ment teams are located in different cities, time zones, and/

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 10
or countries, try facilitating collaborative working arrange-
ments to ensure efficient, accurate, and cooperative results.

 ✓ Enabling interactions with other systems: You don’t
want to have the only product on the block that’s inca-
pable of interacting with the Internet, back-office IT
systems, and other interconnected systems. Stand-alone
products aren’t that smart — and will more than likely
become fall-alone failures.

 ✓ Ensuring compliance: Even if your product isn’t directly
tied to regulatory or industry standards, it may interact
with a product or service that is, so play it safe — so all
the other kids will want to play with you.

 ✓ Shifting your design priorities: Prioritize your design for
upgrade capabilities rather than product stability. It’s more
about ensuring you have the right design priorities. For aero
this may be safety; for defense this may be security; for con-
sumer electronics this may be upgrade capability.

 ✓ Shrinking product lifecycles: As customer demand for
new features shortens the service life of even the best
products, your job is to make sure you hit the market at
the right time with the right set of features.

 ✓ Adapting to ever-changing requirements: Changing
customer needs, dynamic competitive and market condi-
tions, and reprioritized corporate goals are all valid rea-
sons for those irritating change requests. If you’re smart,
figure out how to profit from change.

Probing Potential Pitfalls
Failure to address the challenges associated with building a
new-fangled smart product is likely to land you in hot water —
not to mention tarnishing your corporate image and damaging
your bottom line.

Mistakes you may think are small and easy to fix in a stand-
alone product are often magnified and distributed throughout
an interconnected system design. A software bug can wreak
havoc if you don’t catch it early on in the development process,
increasing your costs and causing your schedule to slip. With
the amount of software in devices doubling every two years, it’s
easy to understand why 66 percent of device software designs
are completed over budget, and 24 percent of large projects are
canceled due to unrecoverable schedule slippages.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: Generating Smarter Products 11

If you’re unable to develop complex products in a shorter
cycle without compromising quality, you stand to lose rev-
enue and tarnish your brand. Yet, smart, interconnected
products often have hundreds — even thousands — of unique
requirements, making it difficult to imagine how you can pos-
sibly maintain quality while shrinking development cycles.

If you’re not equipped to respond quickly to new market
demands or competitive threats, don’t be surprised if you
lose market share to more nimble organizations. For many
organizations, just getting the initial design right is challeng-
ing enough: nearly one-third of all devices produced today
simply fail to meet performance or functional specifications.
You can bet these devices will be voted off the island early!

Just because you have top-notch technical talent working
diligently on system design doesn’t guarantee a successful
outcome. It’s many a system that has fallen short as a result
of failures in subsystem interface specifications, requirements
fidelity, or communication of key knowledge — not engineering.

Recognizing the Need
for a Paradigm Shift

After you’ve accepted the fact that in order to thrive in the
current marketplace, you need to change the way value is
delivered in your products, you can start to re-examine your
product planning, management, and development processes.
And right away, you’ll see the need to shift from a focus on
cost to a focus on innovation and change — with software as
the foundation for differentiation.

Back in the old days, when hardware was king, 3D computer-
aided design (CAD) and mechanical bill-of-material (BOM)
management were the be-all and end-all of cutting-edge sequen-
tial product development (see Figure 1-2). Your hardware
development team used a CAD system to design hardware to
meet a set of requirements, while your software team worked
with a different, but related, set of requirements to produce the
necessary code. Your CAD design and BOM were handed off to
manufacturing, which figured out the fastest and cheapest way
to build the product. Finally, integration and test engineers (in
yet another department) loaded the software and tested the
overall product.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 12

Requirements
Analysis

Design

Development

Integration
and Test

Implementation

Planning

Operations
and

Maintenance

CAD design
BOM

Requirements

Figure 1-2: Sequential product development.

In today’s world, that sort of sequential, document-driven
development process simply doesn’t cut the mustard. Imagine
trying to respond rapidly to unexpected market events or to
new feature requests. Each change requires that you start
from the beginning and work through the entire sequential
process. Your business would dwindle away in no time flat!

If your business depends on a smart system for its liveli-
hood, you need to let go of the sequential, document-centric
processes of the past and develop an entirely new set of core
business processes for the future.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

Taming the Tiger with
Systems Engineering

In This Chapter
▶ Scoping out systems engineering
▶ Tempering project euphoria with real-world reality
▶ Modeling your design

H
ave you ever wondered how NASA successfully man-
aged to develop as complex a system as the Apollo

spacecraft? How disparate teams of design engineers, pro-
grammers, third-party manufacturers, and others worked
together to pull off the first manned flight to the moon?
Well, they couldn’t have done it without the help of sys-
tems engineering.

Systems engineering is an interdisciplinary approach to creat-
ing large, complex systems that meet a defined set of busi-
ness and technical requirements. The aerospace and defense
industries have been using systems engineering for a long
time, and much of what they’ve learned is now being applied
in other industries. As transport systems, powergrids, and
telephone and network systems become smarter, you need
space-age methods to build them.

Systems engineering has been around since the 1940s, but
it started gaining traction beyond the likes of NASA in the
1990s. That’s when manufacturers began to transform ordi-
nary products into smart systems by incorporating infor-
mation technology — marking a turning point in product
development. Only recently has software crept in to assume
a leading role.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 14
By enabling seemingly boundless product functionality, soft-
ware has taken a leading role in all sorts of products, enabling
many new kinds of interconnections between parts of the prod-
uct and between the product and the world. More connections
mean exponential increases in system complexity — and leave
companies no choice but to eliminate silos of development and
devise new ways to manage complexity.

In this chapter, you find out what exactly what systems engi-
neering is, how it can help you manage complexity, and how it
can help you develop smarter products — and innovate your
way to the top.

Getting to Know Systems
Engineering

If you were to ask five experts exactly what systems engineer-
ing is, you’d probably get five — maybe even six! — different
answers. That’s partly because the term systems engineering is
used for several different things and partly because the concept
of systems has been morphing for decades, so the term systems
engineering has no choice but to morph right along, too!

Not to worry, though. While some PhDs may get hot under the
collar about the finer details and scope of systems engineering,
most experts agree on its foundation. In this section, you take a
look at what that foundation is — and how to build on it.

Seeing the forest and the trees

Systems engineering is both a practice and a process (see
Figure 2-1):

 ✓ As a practice, it’s concerned with the big picture: how a
system functions and behaves overall, how it interfaces
with its users and other systems, how its subsystems
interact, and how to unite various engineering disciplines
so that they work together.

 ✓ As a process, it spells out a robust, structured approach
to system development that can be applied at a system-of-
systems level or within specific engineering disciplines.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: Taming the Tiger with Systems Engineering 15

Subsystem Subsystem Subsystem

Software
Component

Mechanical
Component

Software
Component

Electrical
ComponentSy

st
em

s E
ng

in
ee

rin
g

Pr
oc

es
s

co
nc

ep
t,

de
si

gn
, c

re
at

io
n,

 o
pe

ra
tio

n

Systems Engineering
Practice

cross-discipline analysis, systems-of-systems modeling

System

System SystemSystem

Figure 2-1: Systems engineering is a both a practice and a process.

No matter how you slice it, systems engineering is all about
applying discipline to the system development process. And
that discipline comes in two distinct flavors:

 ✓ Technical discipline ensures that you rigorously execute
a sensible development process, from concept to pro-
duction to operation.

 ✓ Management discipline organizes the technical effort
throughout the system lifecycle, including facilitating
collaboration, defining workflows, and deploying devel-
opment tools.

Following some guiding principles
By blending breadth and depth, systems engineering aims to
help you manage the details of a complex development effort
while never losing sight of the overall goals of the project.

Begin by adhering to the following set of guiding principles:

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 16
 ✓ Keep your eyes on the prize. Define the desired outcome

of a project right from the get-go, and don’t stray from
your goal no matter how crazy things get.

 ✓ Involve key stakeholders. Get input from customers,
users, operators, C-level managers, and others as you
make decisions at various stages of the development
process.

 ✓ Define the problem before assuming a solution. By keep-
ing an open mind about the means to your end, you’re
more likely to examine several alternatives — and choose
the solution that best matches your desired outcome.

 ✓ Break down the problem into manageable chunks.
Decompose your system into smaller subsystems, and
then divide each subsystem into hardware or software
components. Another related principle is to manage the
interfaces between the chunks to ensure they integrate
successfully and ultimately deliver the required emer-
gent capabilities.

 ✓ Delay specific technology choices. Wait until you’re well
into the process before selecting physical components,
so you avoid committing to technology that may be out-
dated or unnecessary by the time you’re ready to imple-
ment your design.

 ✓ Connect the dots between requirements and design.
Make sure you can justify your design decisions by link-
ing them back to specific technical and business needs.

 ✓ Test early, test often. Take advantage of prototypes,
simulators, emulators, and any other way to let everyone
involved get an early look at the system. Make sure tests
prove that you satisfy the requirements by linking them.

Exploring the Systems
Engineering Process

It’s great to have strong guiding principles, but how do you
put them into action? Well, one way to do it is to develop a
consistent process for systems engineering that embodies
those principles.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: Taming the Tiger with Systems Engineering 17
Over the past 20 or so years, experts in complex system
design have developed and refined what’s known as the
V-model of the systems engineering process (see Figure 2-2).
The V-model is a graphical representation of a series of steps
and procedures for developing complex systems.

Acceptance
Testing

System
Testing

Subsystem
Testing

Unit/Device
Testing

Concept of
Operations
(ConOps)

Detailed
Design

High-Level
Design

System
Speci�cation

Software/Hardware
Development

Implementation

De�nition and Decomposition

In
te

gr
at

io
n a

nd
 R

ec
om

po
sit

io
n

Validating the System

Verifying the System

Verifying the Subsystems

Verifying the
Units/Devices

Figure 2-2: The V-model for the systems engineering process.

Tracing the “V” from left to right, you execute the systems
engineering process in a series of steps, as follows:

 ✓ Concept of Operations (ConOps): Identify and docu-
ment key stakeholder needs, overall system capabilities,
roles and responsibilities, and performance measures for
system validation at the end of the project.

 ✓ System Specification: Map out a set of verifiable system
requirements that meet the stakeholder needs defined
during ConOps.

 ✓ High-Level Design: Design a high-level system architec-
ture that satisfies the system requirements and provides
for maintenance, upgrades, and integration with other
systems.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 18
 ✓ Detailed Design: Drill down into the details of system

design, developing component-level requirements that
support within-budget procurement of hardware.

 ✓ Software/Hardware Development: Select and procure
the appropriate technology and develop the hardware
and software to meet your detailed design specs.

 ✓ Unit/Device Testing: Test each component-level hard-
ware implementation, verifying its functionality against
the appropriate component-level requirements.

 ✓ Subsystem Testing: Integrate hardware and software
components into subsystems. Test and verify each sub-
system against high-level requirements.

 ✓ System Testing: Integrate subsystems and test the entire
system against system requirements. Verify that all inter-
faces have been properly implemented and all require-
ments and constraints have been satisfied.

 ✓ Acceptance Testing: Validate that the system meets the
requirements and is effective in achieving its intended
goals.

Throughout the systems engineering process, you create and
refine system documentation. At each step on the left side of
the “V” in Figure 2-2, you create the requirements that drive
the next step, as well as a plan for verifying the implemen-
tation of the current level of decomposition. For instance,
during the ConOps step, you create a high-level system
requirements document that drives the System Specification
step, and you create a System Validation Plan that drives
Acceptance Testing. At each step on the right side of the “V”,
you create documentation to support system training, usage,
maintenance, installation, and testing.

By linking all the steps on the left side of the “V” through
requirements and referring back to these requirements as you
work your way up the right side of the “V,” you’re much more
likely to stay true to your original mission and maintain objec-
tivity throughout the process. These linkages provide for
what’s known in systems engineering as traceability. Chapter 3
covers requirements and traceability in detail.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: Taming the Tiger with Systems Engineering 19

Managing Complexity
with Models

Some models are useful, especially when you’re working on
a complex engineering project. If you can develop relatively
inexpensive ways of designing, testing, and verifying your
system before you go and build it, you can save yourself a
lot of time and money — maybe even your job! One way to
do this is to use models to design and refine your system
throughout the development process.

System models allow you to capture complexity at many dif-
ferent levels, including system-of-systems (also known as
ecosystem), system, subsystem, and component levels. They
enable you to explore the details of each of these levels,
known as levels of abstraction independently and hide or
expose details as appropriate.

Models can take many different forms. At the simplest level
it may just be a simple spreadsheet used to calculate some
empirical system property. One the other hand, it may be a
highly complex, interactive computer simulation.

For instance, say you want to understand how the automotive
system (translation: car) that you’re developing captures and
forwards crash impact data to an emergency response system.
You need to explore information about the car’s sensors and
how the car interacts with the external system, but you prob-
ably don’t want to be distracted by extraneous details, such as
wiring diagrams and component placement. The right model
can show you what you need without extra detail.

Models also afford you the following benefits:

 ✓ They allow you to focus on the relevant information for
the issue at hand, while ensuring consistency throughout
your design.

 ✓ They capture both the structure (architecture) and
behavior (functionality) of a system, illustrating relation-
ships and interactions between system elements.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 20
 ✓ You can use models to predict behavior at various levels

of abstraction, enabling you to explore different architec-
ture alternatives early in the development process and
perform trade studies to assess which design choices
make the most sense.

 ✓ You can develop executable models, which allow you to
validate your design against requirements before build-
ing your system.

 ✓ Models enable you to view the details of a system from
multiple perspectives (for instance, architectural, logical,
functional, physical, data, and user), so you can address
specific concerns.

 ✓ You can exploit models to help manage the development
effort.

 ✓ Modeling offers tremendous visibility into a system, pro-
viding a powerful focal point for discussion and mutual
understanding.

 ✓ Models offer a shared space to hold thoughts and deci-
sion criteria, making it easier for you and your develop-
ment team to collaborate.

 ✓ Perhaps most importantly, the system model provides a
synchronization point across multiple engineering disci-
plines, offering a solution to one of the most significant
problems in the development of smart systems: how to
coordinate hardware and software.

Speaking the Same Language
Just as an architect uses a standard set of symbols to repre-
sent building elements in a drawing that will be interpreted by
a construction manager, so a development team should use a
common vernacular to represent system models in order to
promote shared understanding.

In 2001, the International Council on Systems Engineering
(INCOSE) along with the Object Management Group (OMG)
initiated an effort to develop a common modeling language
for systems engineering applications, and within a few years,
the Systems Modeling Language (SysML) was born. Developed
as an adaptation of the software-centric Unified Modeling

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: Taming the Tiger with Systems Engineering 21
Language (UML), SysML is the defacto standard language for
modeling systems and systems-of-systems.

SysML uses a simple diagram approach to model systems (so
simple, some have called them cave paintings), where the
basic unit of structure — a block — can be used to represent
hardware, software, facilities, personnel, or any other element
of a system. Through a series of nested structure diagrams, you
define the internal structure and intended use of a particular
system element (for instance, an antilock braking system).
Then, through a separate series of nested behavior diagrams,
you show how that system element interacts with others, and
with actors (users, outside systems, or the environment), to
accomplish or realize that behavior.

In addition to modeling the structure (architecture) and
dynamic behavior (functionality) of the system, SysML also
allows you to model requirements and performance param-
eters. For instance, for an automotive system, you can create
a requirements diagram to specify a constraint, such as “come
to a stop from 65 mph within 180 feet on a clean, dry surface,”
and parametric diagrams to specify the equations that govern
the motion of the car. Best of all, you can use powerful new
software tools — think of it like building a simulator for a new
race car. This means you can take it for a run and check the
handling before it’s even built!

By defining and organizing model constructs, SysML forces
systems engineers and architects to be very clear and precise
when designing a system. This reduces ambiguity and leads
to higher quality, shorter development cycles, and reduced
costs.

A Good Picture is Worth a
Thousand (or a Billion) Words

The best way to get your arms around modeling using SysML
is to take a look at a SysML diagram. Figure 2-3 shows a simple
context diagram for a modern car that has a built-in global
positioning system (GPS) receiver and a home security con-
trol system remote control.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 22

Driver

Home
Security
System

Global
Positioning

System

Car

Figure 2-3: A simple context diagram for a car.

You use a context diagram to define the boundaries, or con-
text, of your system. In this case, the system is the car, and
it interacts with three actors outside the system: the driver,
the GPS system, and the home security system. An actor is
anything a system interacts with, whether it is a user, another
system, or the environment. You use a context diagram to
scope out the system under consideration.

By defining the system and its actors, you identify significant
relationships, and thus, requirements and interfaces. You can
then begin to map out interface specifications and data flows
between the system and its actors.

Without a context diagram, you may overlook an actor or
two — and come up short on your system requirements. For
instance, if you failed to define the home security system as
an actor in your car’s ecosystem, your smart car won’t be
smart enough to arm your alarm system.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

Revolutionizing
Requirements

In This Chapter
▶ Acknowledging that change is good
▶ Covering all the requirements bases by including use cases
▶ Cascading requirements through the development process
▶ Analyzing the impacts of change
▶ Getting a grip (on requirements management)

B
ack in the good ole’ days, you developed requirements
at the beginning of a project, you designed your product

to meet those requirements, and if marketing came to you
saying that the customer wanted a change (or two or three),
you stomped your feet a bit before spouting off something
about an onerous requirements change process that calls for
57 signatures.

Not so anymore. In a volatile, competitive market in which
success hinges on satisfying customers more than ever
before, you have two choices: either change or cry. In this
chapter, you discover how to engineer system requirements
with change in mind and how to ensure your system design
satisfies the requirements.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

System Engineering For Dummies, IBM Limited Edition 24

Embracing a Philosophy
of Change

In this new age of smarter products, you have to be able to
respond quickly to market dynamics, such as changing cus-
tomer needs, new competitive threats, or the latest regula-
tory standard. Product developers have also noticed over the
years that requirements should change as your understanding
of the need gets better through the development process. To
the traditional system development process, however, change
is the enemy. So what should you do?

Come up with a new process.

You may be happy to know that others have walked before
you and have established an entirely new requirements engi-
neering process. Consisting of much more than just upfront
analysis and requirements definition, requirements engineer-
ing defines a soup-to-nuts process for establishing require-
ments, tying them in to testing, and facilitating change.

Requirements work best when they are engineered with
change in mind. The philosophy of requirements engineering
is that change is welcome. Change is, in fact, a goal!

Understanding Context
Before you begin to establish an initial set of requirements
for a smart product or system, it pays to take some time to
think about the problem your product is trying to solve. For
instance, if you set out to build a car, it’s critical that you
understand exactly how it will be used and by whom. Will
the car be used for city driving, highway driving, or racetrack
driving? Does the target market consist primarily of elderly
drivers, young men, or stay-at-home parents? Will the car be
subject to harsh conditions, such as severe cold, salted roads,
extreme heat, mountainous terrain, or high altitudes?

Understanding context is critical to developing systems that
achieve marketing and business goals. By context, we mean
the set of actors (for instance, users, other systems, and the

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Revolutionizing Requirements 25
environment) with which the system interacts, and how inter-
actions between the system and its actors take place.

Figure 3-1 shows a context diagram for a car with a built-in
navigation system and a remote home security control system
that is intended for use in winter climates. In this diagram, the
car is treated as a “black box” that interacts with the following
actors: the driver, the GPS system, the home security system,
and the winter environment. Defining context helps you
understand what functionality is required of the system and
what exchanges occur between the system and its actors.

Driver

Home
Security
System

Winter
EnvironmentCar

Global
Positioning

System

Figure 3-1: The context of a system delineates boundaries and specifies
interfaces.

Understanding context also helps ensure that you have con-
sidered all the necessary requirements, relationships, and
interfaces before you begin the development process. For
instance, if you omit the “winter environment” actor for your
car, you may fail to specify requirements for a “weather con-
venience package” that includes heavy-duty battery cables
and a protective chassis coating.

At the highest level of abstraction, your system is a “black
box” that interacts with an external set of actors. If you take
a peek inside that black box, you see a set of interconnected
subsystems (for instance, anti-lock brakes, navigation system,
and so forth) that together make up your system. You can fur-
ther decompose each subsystem into a set of interconnected
components (and, perhaps, sub-subsystems). At every level of
decomposition (for instance, system, subsystem, component)
within your system, the context shifts.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

System Engineering For Dummies, IBM Limited Edition 26
Compare the context diagram for the car (see Figure 3-1)
with the context diagram for the car’s built-in navigation
subsystem (see Figure 3-2). At the system level, the car is
the black box that interacts with external actors. At the sub-
system level, the navigation subsystem is the black box, and
it interacts with a different set of actors: the driver, the car’s
electrical subsystem, and the GPS system.

Driver

Electrical
Subsystem

Global
Positioning

System

Navigation
Subsystem

Figure 3-2: Context changes as you explore different levels within the
system.

Understanding context delineates system boundaries and
defines interfaces, setting the stage for the precise, accurate
specification of system requirements.

Diving into Requirements
Think of requirements in three broad categories, or tiers:

 ✓ Source Requirements. These are the requirements you
get from your customers or stakeholders. They may be
broad and general, detailed and specific, comprehensive
or fragmented — or most likely, some of all of these. As
the saying goes, customers obey no rules when it comes
to providing requirements — you get what you get.

 ✓ Mission or Business Requirements. These are the
requirements that specify the operational context in
which the system operates — not what the system does,
but the part it plays in a larger world. For a new military
aircraft, this may describe the kinds of missions it will
fly. For a new smartphone, business requirements may

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Revolutionizing Requirements 27
describe how it operates within the cellular carrier’s
communication infrastructure.

 ✓ System/Subsystem Requirements. These are the require-
ments that define what the system must be able to do.
They start at a high systems level and are analyzed and
decomposed to produce requirements for lower level
subsystems. They may be expressed in common “shall”
statements or in more advanced forms such as models
and diagrams.

At each level of abstraction, requirements define what a
system should do and how it should do it, but not how it
should be implemented. With the ever-increasing complexity
of today’s smart systems, it’s nearly impossible for you to nail
down system requirements right from the start. And in a cli-
mate, such as consumer electronics, in which change trumps
stability, you really don’t want to freeze your requirements
early in the development process.

Seeking broader input
It pays to capture as much information for your source require-
ments, from as many stakeholders as possible, early in the
requirements engineering process. Of course, you start with
your customers, but you also gather input about regulatory,
industry, and safety standards that govern your system, inter-
faces and data exchanges with other systems (for instance, the
GPS system), and business and marketing constraints.

What you’re seeking ideally are requirements that describe
the capabilities of the system rather than the functions.
(For example, what the system should do rather than how it
should do it.) If a customer describes a function, ask them
why they want it. That should lead to a capability.

It’s important, too, to specify both functional and non-
functional requirements. You use functional requirements to
describe what the system should do, given certain inputs. For
instance, given a starting point and a destination, your navi-
gation system should map out and display a route. You use
non-functional requirements to specify performance or qual-
ity requirements or impose constraints on the design. These
include requirements for things such as speed, capacity, reli-
ability, weight, usability, and scalability.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

System Engineering For Dummies, IBM Limited Edition 28
To make sure you’ve covered all the bases, you develop use
cases that describe all the possible ways the system’s functions
could be used. For instance, the function “map route” in your
navigation system can be used to “find the nearest gas station”
or “show me the hotels in the vicinity of my destination.” Use
cases are generally composed of sequences of one or more
system functions. Use cases tell concrete stories of system
usage and can be used in all three requirements tiers — source,
mission/business and system/subsystem.

By capturing usage as you develop requirements, you’re more
likely to design a system that will provide real value.

Satisfying and deriving
requirements
After you’ve scoped out your system context and defined an
initial set of high-level system requirements, you use those
requirements to drive the high-level design process (see
Figure 3-3). During the design process, you develop additional
requirements, such as a System Verification Plan to be satis-
fied during system test, or architectural design constraints to
be satisfied by the detailed design.

Requirement:
Emissions

Meets ultralow
emission standard

Requirement:
Fuel Ef�ciency

Requirement:
Braking

MiniVan
Speci�cation

Veri�ed by
Test case

MaxAcceleration

Re�nedBy
Use cases
Accelerate

Requirement:
Power

Satis�ed by
Power

Subsystem

derived
Reqt

Requirement:
EcoFriendly

Requirement:
Acceleration

Requirement:
Performance

Figure 3-3: The high-level design process.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Revolutionizing Requirements 29

As you drill down into the depths of your design, you satisfy
the requirements developed in the previous (higher) design
level, and derive requirements to be used by corresponding
test level as well as the next (lower) design level.

As you can see, the definition of “requirements” is expand-
ing, as the lines between requirements and design become
blurred, and as the linkages between testing and design
become critical. Your final set of requirements is a combina-
tion of the initial high-level system requirements and require-
ments derived during the design process.

Creating Requirements Diagrams
Although old-fashioned text-based requirements are still nec-
essary for large projects with contractual obligations, they
often don’t cut the mustard in today’s world of complex, flex-
ible, customer-focused smart products. Luckily, the widely-
adopted Systems Modeling Language (SysML) gives you a
framework for modeling requirements. While large sets of text
requirements may still exist in a database, especially when
they came right from the customer, there are new and better
ways to visualize and work with sets of related requirements.

SysML enables you to create hierarchical requirements
models that illustrate dependencies, classify requirements
as original or derived, and capture design choice rationales.
There are two high-level system requirements: EcoFriendly
and Performance. (See Figure 3-3.) The EcoFriendly require-
ment has a specific Emissions sub-requirement.

The Performance requirement has three sub-requirements, one
of which is Acceleration. The Acceleration sub-requirement is
further refined by specific use cases. A test plan for maximum
acceleration is defined (and is a requirement that the testing
process must satisfy). Finally, the Acceleration sub-requirement
generates a derived requirement for power, which is satisfied
by the Power subsystem.

SysML requirements diagrams enable you to easily view rela-
tionships and answer questions, such as, “What requirements
does the Power subsystem satisfy?” or “What would be the

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

System Engineering For Dummies, IBM Limited Edition 30
impact of changing the Cargo Size requirement?” When you
treat requirements as an integral part of the system architec-
ture, it’s much easier to visualize the impact of changes to
requirements on your system. And isn’t that one of the goals
of systems engineering?

Driving Design Decisions
with Requirements

As your requirements are cascaded through the design pro-
cess, the nature of certain requirements may lead you to make
specific design choices. For example, if you are designing an
airplane collision avoidance system, at the start of the pro-
cess, you may have three design options, each of which satis-
fies the functional requirement to avoid collisions:

 ✓ Sophisticated onboard radar system

 ✓ Transponder system

 ✓ Primarily manual (communication with air traffic control)

Each design option has its own unique set of components,
space requirements, and costs, and involves some level of col-
laboration between the system and its actors (for instance, air
traffic control). As you further decompose your design, you
may encounter a non-functional requirement, such as “maxi-
mum cockpit space,” that limits your design options (the
radar system just won’t fit!).

Systems engineers use a technique called a trade study to
evaluate options for the many design choices that must be
made. It’s essentially the same thing everyone does when
making an important decision. Identify the important decision
factors, score each alternative on each factor, add in some
weighting adjustments and make the decision. Trade studies
often require extensive research to evaluate the alternatives
completely.

Keeping track of all the requirements and how they impact
other parts of the system are necessary evils if you want to
deliver successful products. Off-the-shelf software tools can
help you manage system requirements.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Revolutionizing Requirements 31

If you overlook a requirement, you may run into real prob-
lems. For instance, you can design the most phenomenal
automobile cup holder in the world, but if you locate it
just below the car stereo — so your grande latte blocks the
controls — because you failed to relate an “allow ample
clearance” requirement to your design, you’ll miss the mark.
Mistakes like this can really cost you.

Juggling Requirements
and Designs

For the airplane collision avoidance example in the previ-
ous section, say you select the “transponder system” design
option. This semi-automated option involves air traffic control
monitoring transponder signals from aircraft in the area. Your
design choice triggers sub-requirements for a transponder
subsystem design and a subsystem test plan.

You’re well into your subsystem design, when you receive a
requirement change request. The new requirement specifies
that the aircraft must be able to independently avoid colli-
sions. Your design choice doesn’t satisfy the new require-
ment, so you must set aside your design choice and begin
working with an alternative design option, the radar system.

Certain changes may produce derived requirements in a sub-
system design that propagate back up to the system design.
For instance, cost constraints may limit the choice of a system
component, which may in turn constrain subsystem function-
ality, impacting the original requirements. In the old days (like
a few years ago!) this change propagation process consumed
many hours or even weeks, as engineers tracked down and
modified the relevant documents and designs residing in
word processing documents, presentation slides and spread-
sheets. The introduction of models into the process helps a
lot, as discussed in Chapter 4.

Establish a formal requirements change process so you can
easily understand the impact of changes to your system
design.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

System Engineering For Dummies, IBM Limited Edition 32

Linking Requirements to Testing
You’ve just completed the design of a new, super-responsive
car navigation system. The prototype has been built, and
your test team reports back that the system is working great.
In fact, it calculates the route between two points with such
blazing speed (thanks to your brilliant algorithm), it’s bound
to blow away the competition. Your boss is proud, and offers
the prototype to your CEO to use for the day. The CEO is
impressed, until she tries to use it to find the nearest Chinese
restaurant — and loses her patience waiting for a response.

You wonder what went wrong, and then you realize that your
algorithm was optimized for point-to-point route calculations,
but not for finding targets within a range. And although your
system test plan did test the functionality of the system, it did
not test all use cases (or maybe someone forgot to write that
use case).

A key component of the systems engineering process is
establishing linkages between requirements and testing. You
want to make sure you’re building the system you set out to
build — not just a system that “works.”

At each level of system decomposition, as you refine and
derive requirements, you create and refine test plans for
verifying that the system satisfies the requirements. If require-
ments change, you change the test plans. Often the act of
writing the test criteria for a set of requirements helps you
improve and refine the requirements themselves.

It’s a good practice to evaluate your requirements to be sure
they can be tested and even specify early how they will be
tested.

Making Sure You Leave a Trace
To make sure all your requirements are properly imple-
mented, you must be able to trace each one throughout the
development and testing process.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Revolutionizing Requirements 33

Requirements traceability is the ability to link every require-
ment to three related items:

 ✓ The stakeholder needs (source requirements) that it
fulfills

 ✓ The system elements that implement or realize it

 ✓ The test case that verifies it

Traceability helps ensure that you comply with regulations
and standards, avoid overlooking requirements, and stay
focused on the overall goals of the project. By establishing
end-to-end traceability links, you’re able to evaluate exactly
what is impacted by the latest requirement change or an alter-
native design choice — before you make the change.

Rewarding Your Hard Work
For large, complex systems, requirements management
can be a nightmare. Many development teams consist of
hundreds — even thousands — of architects and engi-
neers, all of whom touch requirements, whether to create
and edit them, or simply to review and understand them.
Traceability often traverses four levels of decomposition
as stakeholder requirements are successively cascaded
through to component design and test requirements. Also,
these levels of decomposition often traverse supply chain
boundaries making life even more challenging.

Effective requirements management involves many engineer-
ing disciplines, including system design, architecture, soft-
ware, mechanical, electrical, and test engineering. Business
functions, such as marketing and procurement, also have a
stake in requirements management.

Software tools can help you get a handle on the unwieldy
requirements management process. Such tools are designed
to maintain audit histories, preserve all changes, conduct

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

System Engineering For Dummies, IBM Limited Edition 34
impact analyses, and automate the change management
process. They can also alert you to overlooked requirements,
over-engineered designs, and non-compliance.

Managing requirements is a tough business, but with a little
help from the proper tools can result in a big payoff in terms
of cost, schedule, project success — and your sanity.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

Getting Abstract with
System Modeling

In This Chapter
▶ Decomposing your system into levels of abstraction
▶ Visualizing how the elements of your system fit together
▶ Picturing how your system will behave
▶ Refining system models through iteration

A
 formula is a kind of model. It captures mathematical
relationships among input variables and represents

them with a mathematical structure that applies over a wide
range of inputs. Visualizing the formula helps you get a better
understanding of the relationships between elements of the
structure. And using the formula allows you to test a whole
range of different possibilities until you find one that works
for you.

In this chapter, you explore how you can use system models
to manage complexity as well as abstract essential relation-
ships within a system and test inexpensively before you build.

Modeling System Architecture
Architectural models enable you to capture the static nature
of your system, including both the structure and the intended
usage of the system. For instance, consider the simplified
architectural model of a car, shown in Figures 4-1 and 4-2.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 36
The partial structural model in Figure 4-1 decomposes the
system into several levels. At the top level, you see the overall
system: the car. Descend a level, and you see two of the many
subsystems of a car: the anti-lock braking system (ABS) and
the chassis.

The chassis subsystem further decomposes into another
subsystem (the hub assembly), a mechanical component
(the tire), and other subsystems and components not shown
in this diagram. The hub assembly subsystem consists of an
electronic component (sensor) and several mechanical com-
ponents not shown in the figure.

The ABS subsystem decomposes into a mechanical compo-
nent (rotor) and another subsystem (the anti-lock controller).
The anti-lock controller subsystem consists of two electronic
components: the traction detector and the brake modulator.
The dotted line connecting the hub assembly sensor to the
anti-lock controller shows that there is a relationship between
the two, although the sensor is not an element of the anti-lock
controller subsystem.

Brake
Modulator SensorTraction

Detector

Tire

Chassis

Rotor Anti-Lock
Controller

Hub
Assembly

Minivan
Structure

Anti-lock
Braking

System (ABS)

Figure 4-1: A simplified architectural model for a minivan system.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Getting Abstract with System Modeling 37

Structural models, like the simplified architectural model
shown in Figure 4-1, capture the hierarchical structure of the
system architecture and illustrate connections between ele-
ments of the model.

Figure 4-2 shows another piece of the full architectural model:
an insider’s view of how the parts of the anti-lock controller
subsystem interact with each other and with the hub assembly
sensor. In this case, the sensor output is connected to the input
of the traction detector, and the traction detector output is
connected to the input of the brake modulator. This simple dia-
gram illustrates connections in order to indicate intended usage
but doesn’t specify the conditions under which the interactions
actually occur. You use behavior models (which we discuss in
the next section) to describe the sequence of events that must
happen in order for the interactions to occur (for instance, the
sensor reading indicates a loss of traction, which causes the
traction detector to trigger the brake modulator).

Brake
Modulator

Sensor

Traction
Detector

Anti-Lock Controller

Figure 4-2: Architectural models capture usage information.

Structural models like these can show physical architecture,
as in the examples above, or can be used to show logical
architecture. Logical architectures are being used more and
more in developing complex systems because they allow engi-
neers to reason about functional interactions without specify-
ing a particular physical structure. Take the car in Figure 4-1.
A few decades back, car subsystems, such as brakes, engine,
and radio, were all completely separate, and the physical
architecture was all that was needed to understand and build
them. Now, you may consider the logical architecture of a car
to contain elements such as these:

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 38
 ✓ Propulsion, which may cross the old physical boundaries

of brakes, electrical, engine, and controls

 ✓ Information Management, which includes all information
received, stored, sent, or used within the car

 ✓ Entertainment, which may end up having physical com-
ponents in common with propulsion and information

 ✓ Safety, which may have ties into many other car systems
including, braking, information management, and driver
user interface

By considering the logical architecture separately — and,
ideally, before the physical implementation — systems
engineers can produce better, more elegant approaches. A
dual-view logical/physical architectural approach is a great
way to manage the complexity of new, integrated smart
products — which are just not designed like your grandfa-
ther’s Oldsmobile.

Modeling System Behavior
To understand how a system behaves, you need to understand
how the components in the architecture (logical and physical)
of a system interact. System behavior models capture dynamic
information about a system, such as state transitions, actions
that a system performs in response to specific events, and
interactions between collaborating parts of a system. Models
also capture the flow of data and control between activities,
like for instance how sensor output data is passed on to activi-
ties that take place in the anti-lock controller of a car, or how
control is passed from one part of a system to another.

Figure 4-3 shows a simplified state diagram describing the
operational states of a car. The car remains in one of four
states — off, idling, accelerating, or braking — until a specific
event occurs (for instance, “engage brake”) that causes the
car to transition to another state.

You can map connections between behavior models and
structural models to enforce consistency through a process
called allocation. For instance, you allocate the “detect loss of
traction” action to the “traction detector” component in your
system structure model, and you allocate the “modulate brak-
ing force” action to the “brake modulator” component.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Getting Abstract with System Modeling 39

Idling

Accelerating Braking

engage brake

engage
accelerator

when speed = 0

release brake

Operate

Off

start
engine

stop
engine

Figure 4-3: Behavioral model showing transitions between
operational states.

For complex systems, you need hordes of little behavior models
to represent all the activity that takes place. In many cases, one
activity triggers an action in another part of the system, so your
individual models are interconnected. By the time you’re done
modeling all the activity, you’ll have one big, intricate, uniform,
and consistent model of overall system behavior.

By using standard modeling constructs and semantics,
such as the ones provided by Systems Modeling Language
(SysML), you can use commercial software tools to auto-
mate the execution of system behavior models. Tools can
automatically translate modeling constructs, such as state
transition diagrams, into “if-then-execute” code statements.
This way, you can simulate system behavior in the software,
enabling you to perform “what-if” studies, look at design
alternatives, and conduct impact analyses before you build
your system. Trade studies, which used to take hours or
days, can be completed in minutes in this way.

Mapping Out the Models
Industry standards, such as SysML, provide a foundation for
common understanding of systems modeling throughout all

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 40
these stages. SysML models consist of a set of diagrams that
represent the structure, behavior, requirements, and quanti-
tative constraints of a system. SysML diagrams come in four
different flavors:

 ✓ Structure: Describes what architectural elements (logi-
cal and physical), known as blocks, are contained in the
system or subsystem and how they are connected. For
instance, an anti-lock braking subsystem contains a trac-
tion detector and a brake modulator.

 ✓ Behavior: Describes how the system or subsystem
behaves, including state transitions, sequences of activi-
ties, functions, and interactions. (For instance, “detect
loss of traction” triggers “modulate braking force.”)

 ✓ Requirements: Describes the specific requirements
associated with the system or subsystem. (For instance,
stopping distance specifics are given.)

 ✓ Parametric: Describes the parametric constraints placed
upon the system or subsystem. (For instance, the brak-
ing force equation is a parametric equation.)

Exploring Four Stages
of System Modeling

Systems are, by their very nature, recursive structures consist-
ing of multiple levels, starting with the overall system at the
highest level, and decomposing into subsystems, and then into
components. The best way to model an entire system is to use
a multi-step recursive process — starting at the top — that
consists of the following four stages. The stages spell CURE so
think of it as the cure for complexity:

 ✓ Context: Establish the boundaries of your system, identify
the people and systems with which your system interacts
(also known as the actors), and describe the interfaces
(how they communicate with the system, and what they
exchange). Together, the elements of this contextual model
are known as the enterprise — meaning the system and its
immediate surroundings. Use SysML block diagrams for this.

 ✓ Usage: Describe all the ways in which the actors use the
system. Include who or what uses the system, and who

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Getting Abstract with System Modeling 41
or what the system uses. This is best done in specific,
step-by-step, narrative-like stories of system usage, such
as use cases, and illustrated as SysML activity diagrams.
Refine your system requirements, and make them spe-
cific and complete (remember, source requirements can
leave out a lot of important stuff). The same usage sce-
narios become the basis for system testing later — based
on what you’ve learned from this usage analysis.

 ✓ Realization: Define structure (architecture) and behavior
(function) models that together describe how each usage
is achieved by the system through collaboration among
elements within the system architecture. Required behav-
ior is realized (made real) in the elements of the system.
Now, this is quite different from the traditional design pro-
cess of allocating requirements to physical components
and then hoping that it will work in actual usage. Here,
usage is defined explicitly and then you design the system
based on these specific usages, so you know the system is
designed to meet usage requirements.

 ✓ Execution: Execute the behavior models to demonstrate
that your design satisfies the requirements. Simple, execut-
able models, even at high levels of abstraction are a great
and cost-saving way to discover tricky problems, miscom-
munications, missing or ambiguous requirements, and
other schedule-busting issues early on. They get everyone
on the same page before anything is actually built.

Start at the highest level of decomposition in your system
design: the system level (for instance, a minivan). After
establishing context and usage models, you define your high-
level architecture and behavior models based on the system
requirements. Then you execute the models to demonstrate
that they do, indeed, accomplish the system’s intended uses.
After you’ve completed the process for the system level,
repeat the process for the next level of decomposition: the
subsystem level.

Continue to drill down through levels of decomposition, shift-
ing your context as you proceed to model at each level, until
you reach the lowest level — the component level — where
you specify the physical implementation of your design (for
instance, electronics, software, or mechanical design).

At each level, reach horizontally “across the V” and perform
verification and validation, using the model as the basis.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 42
Use executable models and other kinds of mathematical and
design simulations to do as much verification as you can
before reaching the implementation stage.

The Holy Grail here is a complete system model — a kind of
complete virtual reality version of the actual system. This
isn’t quite possible yet, but as modeling tools get better and
learn to interconnect across engineering disciplines, we’ll get
closer and closer.

Understanding Why Modeling
is in Fashion

You may think that modeling the architecture and behavior
of a complex system is more trouble than it’s worth — until
you remember the pain you experienced on your last project,
when no one on the development team owned up to overlook-
ing a critical requirement, and the post-mortem meeting made
the Spanish Inquisition look like a party.

Modeling allows you to capture all of the hairy details of your
system design in an organized fashion, enabling you to visual-
ize, understand, and assimilate the complexities of system
structure and behavior. It allows you to explore different
architecture and design options, perform trade studies, and
assess the impact of changes before you begin to build your
system — driving down project risk and development costs.

Models provide context for reasoning about system concerns
at various levels. You can use models to explore multiple
views of a system — planning, requirements, architecture,
design, implementation, deployment, behavior, input data,
output data, and more — so you and your colleagues can
reason about big picture issues just as easily as about
detailed design issues.

Using industry-standard modeling languages and techniques,
such as SysML, reduces ambiguity and removes language barri-
ers that might exist between members of diverse development
teams, and provides a single master source for project devel-
opment status and documentation. Improved collaboration
and clear, precise documentation leads to greater efficiencies,
shorter development cycles, and best of all, improved quality.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

Ensuring Tip-Top Quality
In This Chapter
▶ Integrating quality into the systems development process
▶ Iterating testing and design
▶ Using models to reveal errors early

I
t used to be that quality assurance was a process that took
place at the end of the development cycle, as if quality was

a tangible feature that you could add to the product before
shipping. And when defects were discovered, it took a major
effort to identify the root causes and fix the problems.

In today’s world of increasingly complex software-driven
smart products, quality must become an integral part of the
systems development process for there to be any hope of
delivering products that are not only defect-free, but demon-
strate a fitness for purpose. In this chapter, you take a look
at how systems engineering helps identify quality issues
through validation and verification early in the development
cycle, leading to improved chances for project success.

Exploring Levels of Testing
When you design a smart product that includes several subsys-
tems along with thousands (or millions) of lines of code, you
may wonder how you can possibly verify and validate the entire
system. Where do you begin? How do you ensure all the pieces
of the puzzle not only fit together properly but work together
properly to deliver the product functionality your stakeholders
(and stockholders) are looking for? Well, you actually start the
quality process when you start to design the system.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 44
Large, complex systems are decomposed into several levels,
including the system level, one or more subsystem levels, and
finally, the component level.

While it may seem intuitive to wait until the system is all
put together to test it, good systems engineering practice
includes more sophisticated techniques for ensuring qual-
ity as the system is built. As each component of the system
(hardware or software) is built, it is tested by itself then inte-
grated with others to form a subsystem. Next, the subsystem
is tested by itself and then integrated with others to form the
system, and the system is tested. Finally, the entire system
is tested along with its operating environment (context) to
make sure the whole thing does what it is supposed to do in
the real world.

In addition to testing the system as it is being built, some verifi-
cation and validation can be performed on models and simula-
tions of the system, bringing problems to light early — before
you bend any metal or solder any circuit boards. You can even
perform verification activities during the early requirements
gathering stage to ensure your interpretation of the customer
need is in fact correct.

Unit testing
Testing at the lowest system level is tightly coupled with the
implementation of your design. You test each hardware or
software component, fix defects, and redo your implementa-
tion. For software, this may involve several iterative cycles
of coding, testing, and recoding until you’ve thoroughly
debugged the software.

After you’ve addressed known defects, you’re ready to verify
that the component satisfies the requirements allocated to it.
Remember when you developed the detailed design of your
system? Well, part of that detailed design phase involved
defining specific component-level requirements and creating
a Unit Verification Plan. Now, you use the test cases defined
in that Unit Verification Plan to verify whether the component
satisfies the allocated requirements. If defects are discovered,
go back to your implementation and fix the defects. After the
components have been thoroughly vetted, they are ready to
be integrated into higher-level assemblies or subsystems.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Ensuring Tip-Top Quality 45

Make sure your Unit Verification Plan thoroughly documents
the specific test cases and results for each component and
that you use a traceability matrix to tie these tests back to
the specific requirements they verify. This ensures that if the
tests all pass, the system satisfies all the requirements.

Subsystem integration
and verification
Fully-verified hardware and software components are ready
to be integrated into modules or subsystems. If you’ve tested
out the interfaces first, this should proceed fairly smoothly.

The goal of this stage of testing is to ensure that all of the
interfaces between components and assemblies have been
properly implemented and that all subsystem requirements
and constraints have been fulfilled.

Depending on the complexity of your subsystem, you may
need to develop an integration plan that defines the order
in which you integrate lower-level components and sub-
assemblies. Plan your integration so pieces that need to work
together are ready for integration at the same time, if pos-
sible. At each integration step, verify the functionality of the
subassembly against the appropriate set of requirements,
using the Subsystem Verification Plan you defined during the
design phase.

Be careful not to ignore the tests you performed to verify
requirements at the component level, since many require-
ments are cascaded through multiple levels of system decom-
position. For instance, if a system requirement specifies that a
display screen should go blank when a user presses a button,
you need to verify that the screen component can blank itself
(component-level test), and you need to verify that pressing
the button triggers the blanking of the screen (subsystem-
level test).

System testing
Through progressive iteration, you integrate, test, and verify
subsystems until you reach the system level (see Figure 5-1).
Each iteration consists of careful, thorough testing — with

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 46
particular emphasis on the interfaces — and verification
that the appropriate requirements have been fulfilled. At
the highest level, you perform tests to verify that the overall
system fulfills the high-level system requirements defined
early in the design phase. Once again, you base your testing
on a verification plan that you defined in parallel with the
system requirements.

It’s important to document the results of each test case and to
note any unexpected responses or other anomalies. However,
you should resist the temptation to fix a defect as soon as you
discover it, or you may lose configuration control. Instead,
document the problem, analyze the cause, and define an
action plan for resolving it within the context of a systematic
process.

Veri�cation

subsystems

veri�ed
system

veri�ed
subsystems

fully-tested
components

sub-
subsystems

Integration

Figure 5-1: Integration and verification is an iterative process.

If all goes well, you’ll have a verified system that you can dem-
onstrate to stakeholders. You’re able to prove that all system
requirements have been satisfied, confirming that the system
was built correctly.

System acceptance testing
“If you build it, they will come.” If you buy into that phi-
losophy, you may come up a bit short. Your system may be

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Ensuring Tip-Top Quality 47
designed and implemented perfectly, satisfying all the require-
ments and then some, but if it doesn’t fulfill its intended use,
it’s bound to be a flop.

Take, for instance, the case of a well-engineered traffic light
control system. Expertly designed to control the sequence of
traffic lights in a large city, this system might fail to meet its
intended purpose — to reduce congestion by streamlining the
flow of traffic — if no one bothered to study the city’s typi-
cal traffic patterns and map them to system requirements for
timing sequences.

The goal of system acceptance testing is to validate that the
system fulfills its intended purpose.

During the conceptual phase of your project, you identified
key stakeholder needs, overall system capabilities, usage
scenarios (CONOPS and use cases) and performance mea-
sures for system validation. You defined a System Validation
Plan, and, if you were smart, you put it in a safe and didn’t
let anyone modify it to accommodate rogue objectives like
skimping on quality to save a buck or two. Your System
Validation Plan is the rock upon which you shall prove that
your system achieves its intended goals.

Conduct system validation with real live users, and measure
performance as defined by your plan, possibly including
customer satisfaction. Validation may require data collection
before, during, and after system deployment. After carefully
documenting system performance, meet with stakeholders,
analyze all the data, and assess project success.

When a system problem is observed during testing, usually
there’s a fault in the system that can be corrected by making a
change to the system. Notice, however that the problem could
be something else. If your verification plan or test procedure
is wrong or outdated, then the test may fail due to no fault in
the system. Similarly, if a requirement is wrong, ambiguous or
incomplete (especially an interface requirement), that may be
the source of the problem — all the more reason to focus on
getting requirements and test plans correct early in the game.

When verification testing turns up a problem, go back and
check your requirements and design, make the necessary
adjustments, and repeat the testing.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 48
For instance, say you’re designing a rain-sensing wiper (RSW).
The goal of the RSW is to automatically sweep the windshield
upon detection of rain droplets on the exterior surface of a
windshield. The high-level architecture of the RSW system
includes an optical sensor with a specified operating range
attached to the interior surface of the windshield, an elec-
tronic control unit, and software. Your design calls for the
sensor and the software to interact in order to identify the
presence of water and to activate the wiper.

You test the individual components and verify that the RSW
system works as designed within the operating range of the
sensor. Then you integrate the RSW, the windshield, and other
subsystems into a car. When you test the operation of the RSW
in the context of the entire system, lo and behold, it fails.

After an extensive root-cause analysis, you discover the
source of the problem: the physical characteristics of the
windshield (specifically, the optical index and thickness) are
incompatible with the operating range of the sensor. You real-
ize that you failed to define a requirement for the physical
characteristics of the windshield that would ensure compat-
ibility with the RSW system. In this case, you need to go back
to the design phase, add the requirement, and redesign the
windshield.

What got you in this mess was an unstated and unexamined
assumption, a classic bug-a-boo of systems engineers. The
assumption was that the sensor would work with any kind of
windshield material. Of course, if you had simply stated that
assumption, someone could have said, “Well, not any mate-
rial!” and identified the missing requirement. This painful
experience is a prime example of why it’s so important to test
early and often.

Testing Early, Testing Often
The sooner you discover a defect, the cheaper it is to fix.
As Figure 5-2 shows, defects discovered after the product is
released can cost nearly 100 times more to fix than defects
found during the requirements process. But this figure is just
one example. By sticking to a rigorous testing process, you
can drastically reduce the cost of fixing defects.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Ensuring Tip-Top Quality 49

$80/defect

$240/defect

$960/defect

$7,600/defect

During the
requirements phase

During the design and
implementation phase

During the
QA/testing phase

After product
release

Figure 5-2: The cost of correcting defects increases dramatically through-
out the development process.

The Devil Is in the . . . Interfaces
One of the biggest problems in developing and testing large,
complex systems is that pieces developed independently
don’t always work together as planned when integrated
together. If you wait until all the pieces are done before you
integrate and test, and then find some integration problems,
you’re sunk — because you’ve probably already burned
through most of your schedule and budget.

This factor is probably the largest single factor that causes
schedule and cost overruns: finding integration problems late
in the development process. It’s a big risk factor to program
success.

So, what can you do about it? Systems engineers have devised
two main approaches to minimizing this risk:

 ✓ Verify interfaces and interactions between key sub-
systems and components early by substituting models
and simulations for some (or even all) subsystems and
components

 ✓ Integrate parts progressively (or iteratively) and see how
they work, instead of waiting until everything is done to
start integrating and finding problems

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 50

The first approach, modeling the system (see Chapter 4),
can be a great help here. Usage models, expressed as activ-
ity diagrams and sequence diagrams, help you understand
what pieces of the system talk to each other and what
interfaces are required between them. With that knowledge,
you can bring pieces that “talk” to each other to an early
integration — reducing the amount of simulation and emula-
tion required. Forcing the cooperating subsystem teams to
work with each other as soon as possible surfaces issues much
earlier in the design process — when they’re more easily and
less expensively fixed.

Models also enable you to test your understanding of the
interactions between subsystems before you build — by
executing the models and verifying that what you thought was
going to happen actually happens. Translating thought to dia-
gram to execution can uncover discrepancies at a time when
it is easier and cheaper to fix problems.

With models that simulate the operation of components that
haven’t been built yet, you can test interfaces long before you
commit the entire system to steel and circuitry. Think of some-
thing like a flight simulator that lets engineers test aspects of an
aircraft’s operation long before it leaves the ground.

The second approach is to incorporate as much progressive
integration and test (iteration) into the development lifecycle
as possible. Software engineers have been using iterative
development lifecycles for decades. Of course, it’s easier to
use iteration in software development than in, say, electron-
ics or airframe construction (because hardware typically
demands a longer lead time), but you can apply some of the
same ideas.

Early iterative cycles can address high-risk parts of the prod-
uct by integrating a combination of prototype or simulated
hardware with newly development software. With these
preliminary, but executable, system builds, you can solve
integration problems, perfect interfaces, and validate your
trade-study choices.

Some forward-thinking systems engineers suggest that you
even try integrating first, and then test the individual compo-
nents as part of the integrated subsystem. While this sounds
counterintuitive, it actually addresses risks earlier than wait-
ing until system integration for things to break.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

Enabling Large Teams to
Collaborate and Manage

Changes
In This Chapter
▶ Seeking common ground for effective human interactions
▶ Automating work processes
▶ Linking tools and lifecycle data

S
mall, intimate product development teams really know
how to collaborate effectively: they share critical infor-

mation, use the same development tools, and notify each
other whenever they change a requirement, discover a defect,
or throw a party!

Multiply the size of the team by a factor of oh, say, 100, give
them a wish list of 700ish requirements, tell them they have
six months to build the product — and you can kiss your job
(and all party invitations) goodbye.

How can you capture the magic that exists for small develop-
ment teams and adapt it for large development teams? This
chapter will show you how.

Learning from Facebook
There’s a lot to be learned by exploring the wildly success-
ful social networking site Facebook. Introduced in 2004
when most computer owners already had an email account,

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 52
Facebook took off immediately, and, as of early 2011, boasts
600 million users. So what is it about Facebook that makes it
so popular?

The founders of Facebook figured out a way to develop a
user-friendly, real-time platform for social networking that
is organized around typical social interactions with friends,
families, and other people with similar interests. It provides a
user-friendly interface for sharing news, photos, likes, dislikes,
relationship status, and other information. Instead of forcing
people to communicate in a technology-driven format, as does
email, Facebook uses technology as a platform to support
people-driven communication.

Now, imagine applying the “Facebook paradigm shift” to the
world of systems engineering. Imagine a technology-based
platform that capitalizes on the way development teams,
engineers, and stakeholders interact. Like Facebook, such a
platform would leverage Internet connectivity to bring people
closer together — making a large, widely dispersed team as
effective as a small one working together in the same room.

Getting Everyone on
the Same Page

It takes a heck of a lot more than just brilliant engineering
to create a smart product that is successful in the market-
place. Research shows that a third of all produced devices
do not meet performance or functionality requirements,
and that 24 percent of all projects are canceled due to
unrecoverable schedule delays. Many times, the reason for
a catastrophic system failure is not related to the system’s
engineering design; rather, it is due to failures of knowledge
or communication.

It’s no wonder large systems development efforts suffer from
poor communications. Most large development teams are
widely dispersed across cities, companies, and countries.
Language and cultural barriers make communication difficult,
and time differences often hamper collaboration. Even for
employees within the same company, organizational silos can
impede communication, reduce productivity, and propagate
the “blame game.”

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6: Enabling Large Teams to Collaborate and Manage Changes 53
Poor communication can cause many problems, including:

 ✓ Lack of clarity of system goals

 ✓ Multiple interpretations of system requirements

 ✓ Incomplete or overlooked requirements

 ✓ Time wasted gathering information manually from mul-
tiple sources

 ✓ Teams working with outdated documents

 ✓ Gaps or redundancies in responsibilities

To add to these problems, development teams are under
enormous pressure to increase productivity — even as
system complexity increases. What’s more, smart products
with loads of software require more documentation, and the
learning curve for new team members is steep.

The best way to overcome the communications difficul-
ties inherent in a large team environment is to provide a
common foundation for development and maintenance and
to establish a common language for communicating across
that foundation.

Laying the foundation
Many of today’s smart systems contain multiple subsys-
tems from various sources and millions of lines of code —
developed by engineering teams from multiple companies,
countries, and cultures. Think of a modern aircraft — the
airframe is built in one country by one company, the engine
by another, avionics by a third, and integration software
by yet another! To streamline the development and testing
processes, it’s essential to provide a unified systems develop-
ment platform.

Using a common development platform breaks down bar-
riers between teams, enabling engineers to work together
throughout the development lifecycle. A unified platform
makes it easier for distributed teams to integrate their
work and share knowledge, shaving precious time off the
development cycle. By reducing miscommunication and
streamlining workflows, you can expect to see substantial
improvements in quality — and higher team satisfaction.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 54
What’s more, engineers can share project status with
everyone on the team through management dashboards,
making it easier for development managers to keep the
project on track.

Speaking the same language
There’s nothing more effective in uniting diverse development
teams spanning multiple cultures and engineering disciplines
than adopting a model-driven design approach based on a
common, domain-independent language. By providing a visual
reference for system design, modeling breaks down language
barriers, making it easier for everyone on the development
team to understand the system and share cross-functional
knowledge. And a shared understanding translates directly
into productivity improvements, since engineers are no
longer wasting time resolving misunderstandings and rework-
ing designs.

The Systems Modeling Language (SysML) is emerging as the
accepted standard for model-driven systems development.
It supports all phases of systems development, including
requirements specification, system analysis and design, veri-
fication, and validation of systems that consist of hardware,
software, data, people, and even facilities. It also has the
advantage of being completely compatible with the Unified
Modeling Language (UML) which makes the movement of
models from the systems perspective to the software perspec-
tive much easier.

There are many commercially available software tools that
support development using SysML, each with its own unique
development environment. To facilitate effective collabora-
tion, teams should standardize on a common work platform
consisting of the most effective tools available on the market.

Going Beyond E-mail and
Document Sharing

Establishing a common development platform is a giant step in
the right direction toward facilitating effective teamwork — but

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6: Enabling Large Teams to Collaborate and Manage Changes 55
it’s not enough. If one member of a development team makes a
change (for instance, to a requirement or a system model), and
it is not communicated immediately to the rest of the team, the
result is chaos.

Tracking changes
When engineering a system, critical information is constantly
changing — by design. Systems engineering involves (among
other things) iterative design and test processes: You design
your system, develop models, test the models, redesign to fix
defects, and so forth. So you’re constantly updating models,
test results, and other information. Requirements can change,
too, as market and business needs evolve.

Traditionally, large engineering teams have relied on text-
based documentation as the source of all project-related
information. File cabinets full of requirements documents,
high-level architecture documents, design documents, and
other documents often serve as the foundation for all system
knowledge. But documents are limiting in that they simply
record information and don’t easily allow you to change the
information. If you rely solely on documentation, your docu-
ments will be obsolete before they’ve been approved!

Systems development teams need a consistent, flexible
mechanism for capturing critical information and facilitating
updates while maintaining integrity.

Communicating changes
The traditional method of creating a few dozen critical docu-
ments and exchanging information via email just doesn’t work
well in the complex development environments of today.
With the number of requirements for complex systems in the
hundreds, or even thousands, relying on e-mail exchange only
results in chaos and confusion.

Systems development teams need a vehicle that facilitates
effective exchanges among distributed team members. A
robust platform for sharing information is the only way to
avoid the problems that result when multiple versions of criti-
cal documents are floating around all over the place.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 56

Deciding What’s Important
to Share

If you had to sit down and make a laundry list of all the dif-
ferent types of critical information that must be managed in
order to develop a complex system, you’d probably never get
your laundry done. So when you’re deciding what information
should be exchanged with everyone on your development
team, be careful to avoid listing every single piece of data
describing your system.

Your goal is to facilitate sharing and collaboration among
members of a systems development team, not to overwhelm
them with extraneous information. So make a list of the mini-
mal information that should be shared in order to facilitate
collaboration, such as

 ✓ Development priorities

 ✓ Project approvals

 ✓ Schedules

 ✓ Employee roles and responsibilities

 ✓ Requirements

 ✓ Change requests

 ✓ Conceptual models

 ✓ Use cases

 ✓ Test plans

 ✓ Defects

 ✓ Critical issues

 ✓ Traceability data

 ✓ Budget information

 ✓ Procurement information

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6: Enabling Large Teams to Collaborate and Manage Changes 57

Exploring Ways to Facilitate
Sharing

It’s unrealistic to expect each of the potentially hundreds of
companies participating in the product development process
to use the exact same set of tools from the same tool vendor.
Therefore, there needs to be a way for everyone on the vir-
tual team to be able to share development data — no matter
which team or partner created it.

Effective collaboration begins with a platform on which the
overall development process can be managed and tracked.
Using this platform, stakeholders and engineers process and
produce data that is shared, analyzed, and reported on effi-
ciently and effectively throughout the systems development
lifecycle.

Automation and federation tools that leverage technology to
streamline communication and automate workflows are the
next major development in collaboration.

Requirements

Models

Test resultsTests

Models

Reqmts

Repository

Data

Templates

Publishing
System

Driver

Home
Security
System

Global
Positioning

System

Car

Figure 6-1: A virtual repository of design information can help improve
collaboration.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 58

Creating a virtual repository
of live information
Individuals need real-time access to up-to-date information
about the project, no matter where they are located and no
matter what the format of the data. Traditionally, systems
engineers dedicate a significant amount of time keeping track
of information and making sure that everyone involved is
working from the same documents.

By organizing critical information in a virtual repository, you
create a single source of knowledge about critical aspects of
the development process and can automate the process of
information sharing.

A virtual repository doesn’t physically exist; rather, data is
pulled as necessary from globally distributed locations on an
as needed basis. For instance, mechanical engineering data
may be pulled from a physical data repository managed by
the mechanical engineering team in Seattle, whereas electrical
engineering data may be pulled from an electrical engineer-
ing database located in Tokyo. Individuals need not know (or
care) where the data physically resides — as long as they get
what they need when they need it.

Figure 6-1 shows a conceptual model for such a virtual reposi-
tory and how it can be used. A business process manager acts
as the brains behind the operation, managing the execution
of the development activities. It can access data as neces-
sary depending on what it needs (and when it needs it) by
using open standards. Instead of handing down text-based
documents from product managers to architects to design
engineers to test engineers, and so forth, all of the people
involved in the development process can access the data they
need transparently.

A virtual repository such as this provides a single source
of up-to-date information that everyone can access wher-
ever they are located. What’s more, people can exchange
information, share ideas, and capture decisions and thought
processes — almost as if they worked in the same office
together.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6: Enabling Large Teams to Collaborate and Manage Changes 59

Simplifying tool integration
While sharing resources and assets via a virtual repository
sounds great on the surface, in reality, it’s not that easy. In-house
tools, open-source projects, and multiple vendors can create
barriers due to incompatible data formats and other factors.

Over the past few years, vendors of popular system life-
cycle development tools, such as the types of tools listed
in Table 6-1, have come together to define ways to facilitate
the integration of systems lifecycle tools. Forming a commu-
nity known as the Open Services for Lifecycle Collaboration
(OSLC), these companies are committed to promoting new
forms of collaboration by eliminating barriers between tools.

Inspired by the Internet architecture, OSLC specifies a set of
loosely-coupled standards, common resource formats, and
services designed to facilitate the sharing of system resources.
OSLC makes it easier to use tools from any vendor in combina-
tion, while easily sharing system lifecycle data, such as require-
ments, change requests, test cases, and defects.

Why a “virtual” repository?
Why a “virtual” repository and not a
“real” one you ask? Well, there are
many reasons why it may be a better
idea than “jam everything in one
database.”

 ✓ First, if you try to define a “uni-
versal database” that would
have to know how to store
everything you might ever want
or need, it would be a big job!

 ✓ Second, you would have to be
able to support every vendor’s
tool that currently or may exist in
the future.

 ✓ And third, one massive data-
base that is accessed from all
over the planet will have good

performance for some and very
lousy for others, not to mention
issues about upgrading to new
versions, single point failures (of
network or hardware), and many
other challenges of a single
physical data store.

Virtual is definitely better — distrib-
uted, optimized for each tool’s data
and performance, easily upgraded,
and easy to connect to others.

Warning: Going with a “put every-
thing in one place” solution may lock
you into a proprietary solution and
one vendor, removing your choice
as a consumer!

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 60

Table 6-1 Key Systems Engineering Tools
Type of Tool Key Capabilities
Requirements Management and
Traceability

End-to-end live traceability to
source, mission, and system/
subsystem requirements

Model-based Systems
Development

Model requirements, system func-
tionality, realization, trade studies,
execution, and validation

Change and Configuration
Management

Manage collaboration,
change, shared repository, and
configuration

Automated Documentation
Generation

Generate requirements, design,
and specification documents

Integrated Systems and Software
Engineering

Flow-down of requirements and
models, embedded development

Automating document production
Even in a model-centric development environment, documen-
tation and reports are required for contractual obligations,
compliance, technical reviews, and project management.
Documentation often involves a lot of manual labor, such as
taking a diagram out of a modeling tool, doing a screen capture,
and pasting it into a document. What’s more, engineers spend a
lot of time collecting information from different sources, ensur-
ing they have the latest information, summarizing and reformat-
ting information in order to produce a customized report.

Document automation tools can streamline the production
of custom reports, while ensuring consistency of information
within each report.

Automation tools enable you to access a central repository of
information, identify the types of information you need, select it,
and request a report. Not only is this process simple, but also it
facilitates reuse and consistency of information. What’s more, you
can consolidate critical information from multiple sources — even
multiple vendor’s products — into a single report.

Surely, this saves time producing the documents in the first
place, but the big win is when something changes. Make the
necessary changes in the requirements and models, press a
button, and presto — out come the revised documents.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 7

Ten Ways to Win with
Systems Engineering

In This Chapter
▶ Fixing design flaws early in the development process
▶ Developing flexible business models
▶ Gaining control of complex embedded software
▶ Improving requirements management
▶ Reusing code to accelerate product launches
▶ Using collaboration tools
▶ Delivering complex solutions to market on time
▶ Using an integrated development platform
▶ Test early, test often
▶ Sharing requirements to increase efficiency

S
ystems engineering can give you the competitive edge
you need to succeed in developing smart products that

deliver tangible value to your customers (and your bottom
line). By making systems engineering a part of your core busi-
ness processes, you’re more likely to produce the products
people really want with fewer costly defects while enhancing
your ability to respond to market dynamics.

In this chapter, you look at ten examples of companies that
adopted best practices in systems engineering — and got real,
measurable results.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 62

Fixing Design Flaws before
They Go Viral

One of the biggest challenges in engineering smart products is
identifying defects earlier in the development process. Most
defects are introduced during the design process, but not
detected until the testing phase or, worse yet, after the prod-
uct has made it to production.

For expensive, mass-produced products, letting design
flaws slip through the cracks can be enormously costly,
but for mass-produced defense systems, overlooked
defects can also be dangerous. To complicate matters
further, most defense systems are composed of multiple
complex subsystems designed and built by an array of
approved subcontractors.

As a subcontractor to the United States Department of
Defense, Brockwell Technologies based in Huntsville,
Alabama, creates real-time embedded weapon systems appli-
cations and performs embedded diagnostics for military
vehicles. Developing interconnected weapons systems pres-
ents a unique challenge: how to make changes to one system
without affecting other systems.

To reduce the possibility of introducing defects in interac-
tions between subsystems, Brockwell Technologies incor-
porated model-based system design and testing into its
business processes. By modeling both system structure
and behavior, Brockwell engineers can prototype complex
systems and visualize how well they will function. This pre-
dictive modeling technique enables engineers to identify
design flaws early in the development process — before the
systems are mass-produced.

Brockwell’s investment in systems engineering is a win-win
for the Department of Defense and for Brockwell: Brockwell
improved the reliability and safety of its weapons systems
while decreasing time-to-market by 40 percent.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 7: Ten Ways to Win with Systems Engineering 63

Engineering a Flexible
Business Model

If you’re planning to start a new business, or enter a new
market, the smartest thing you can do is develop a flexible
business infrastructure designed to be the poster child of
systems engineering. That’s exactly what an Atlanta-based
company did when it entered the red-hot telematics market
several years ago.

The company saw an opportunity to outrun the veterans
in the industry by setting up its business infrastructure in
a way that would allow it to adapt business relationships
and service delivery models quickly. With a flexible process
framework built on open technology, the company reasoned
it would be able to jump on new service opportunities before
the existing telematics providers — with their proprietary
technology and rigid business models — could react.

The company designed all of its core business processes —
including front office, back office, and operations — with one
goal in mind: launching new services quickly. What’s more,
to streamline the development of new services, the company
installed a common systems development platform and a host of
collaboration tools. The company’s systems development infra-
structure enabled it to manage work products and deliverables,
store deliverables in a central repository, facilitate collaboration
among globally distributed teams, maintain version control, and
rapidly communicate updates.

With a combination of open systems, flexible processes, and
enhanced collaboration, the company is able to bring new
services to market in less than 30 days. As the focal point
of telematics continues to shift from the technology itself to
innovative services that use vehicle data in new ways, the
company is, indeed, well-positioned to win the race.

Gaining Control of Complex
Embedded Software

Smart companies know that when their product is just one
part of a larger system-of-systems solution, ensuring consistent

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 64
product quality is of the utmost importance. After all, you don’t
want your company to be branded as the “weak link” in the
system. But as the size and complexity of embedded software
grows, it becomes more and more difficult to ensure quality.

For a long time, manual software development was a way of
life for a German technology service provider that specializes
in measurement and control technology and process engi-
neering. But when the company set out to develop complex
embedded software for systems that remotely manage and
control photovoltaic systems, it realized that it had to adopt a
new software environment.

With four specific goals in mind — decrease product defects,
improve traceability, increase re-use of software modules, and
ensure consistent product quality — the company selected
a platform that uses model-driven development for real-time
and embedded systems engineering. The new system enables
the company to identify and repair problems earlier by testing
models during the design phase — ensuring consistent, high
quality software. As a bonus, the company can now create
reusable source code modules and subsystems, giving the
company an edge on the competition.

Improving Efficiency with
Requirements Consistency

To build the right product — and build the product right —
you have to have a solid understanding of customer and stake-
holder needs, and carefully define your system requirements
around those needs. Without effective requirements manage-
ment, you can easily lose sight of your objectives — and your
customers.

With hundreds of geographically dispersed developers
all using different requirements management tools, one
Australian company was struggling with development
inefficiencies and inadequate requirements traceability.
Management was becoming increasingly concerned about the
fact that they couldn’t test the requirements in a uniform way,
since each development team had its own way of managing
requirements. Worst of all, the lack of consistency increased
the opportunity for error and had the potential to jeopardize

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 7: Ten Ways to Win with Systems Engineering 65
the company’s relationship with its biggest customer, the
Australian Defense Force.

The organization deployed a unified requirements manage-
ment solution designed to support requirements analysis
throughout the company. By providing ubiquitous access to a
centralized requirements repository, the solution eliminates
confusion, costly rework, and duplication of effort. Most
importantly, the solution facilitates end-to-end requirements
traceability — ensuring that the product rolling out the door
fulfills the customer’s needs.

Leveraging Reusable Code to
Accelerate Product Launch

If your portfolio includes a line of products with similar core
capabilities, you’ve probably got a lot of similar software code
floating around. Smart companies structure their code into
reusable modules, so they can expedite the development of
future products.

That’s exactly what Océ N.V. had in mind when it set out to
produce the world’s fastest cut sheet printer. A market leader
in digital document management technology and services, Océ
develops advanced software applications that deliver docu-
ments and data over internal networks and the Internet to
printing devices and archives locally and throughout the world.

Normally, Océ codes each new printer from scratch, but when
faced with the enormous task of coordinating code for 17 pro-
cessors distributed throughout the new printer, the company
decided to re-examine its development processes.

Océ deployed model-driven development tools to decompose
the printer system into smaller, more easily designed subsys-
tems. This enabled its developers to model a set of concurrent
finite state machines, which were then coded into a set of reus-
able modules for multiple target environments. Now, whenever
a change is needed, Océ simply updates the models and regen-
erates the code — slashing the turnaround time for change
requests.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 66

Today, over 50 percent of the company’s software code is
reusable, leading to enormous improvements in efficiency and
quality. In fact, Océ was even able to launch a working proto-
type of a new printer in just two months — six months sooner
than it previously could.

Streamlining Development
with Collaboration Tools

Companies that develop complex, intelligent, highly instru-
mented products know that success depends as much on
managing the technical work as it does on superior engineer-
ing. Without a system-level discipline coordinating the efforts
of diverse engineering groups, complex products are destined
to become newsworthy failures.

When General Motors (GM) set out to design the Chevy Volt,
it put a tremendous effort into establishing best practices
for systems engineering. GM examined both its development
practices and its technical work management practices with
an eye to improving both.

Traditionally, GM systems engineers spent the majority
of their time checking on developers’ workloads and
making sure that everyone had the same version of require-
ments and other documents. To free up the engineers to
focus more on functionality and quality, GM decided to
deploy a commercial tool to coordinate development teams
and manage a single version of requirements and other
documentation.

GM then deployed model-driven systems development prac-
tices to help manage complexity (the Volt runs on about 10
million lines of code). GM developers used models to visualize
the interactions between embedded systems and ran simula-
tions in order to test the models.

The combination of collaboration tools and model-driven
systems development really paid off: GM completed the Volt’s
development in just 29 months — a record for GM, where new
car development typically takes five years or more.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 7: Ten Ways to Win with Systems Engineering 67

Delivering Complex Solutions
to Market on Time

To succeed in today’s ultra-competitive environment, com-
panies that develop extremely large, complex systems know
they need to get smart about focusing their development
process on requirements. The ability to capture and manage
requirements can mean the difference between winning and
losing a big contract.

A defense company wanted to reduce the risks involved in
delivering complex, multimillion dollar system-of-systems solu-
tions to market on time. The company devised an innovative
idea: bring together requirements management and enterprise
architecture frameworks in a way that enables the company to
deliver complex, requirements-driven systems on schedule.

The company based its solution on commercially available
products for requirements management and system architec-
ture planning. Now, the company has the ability to define not
just technology solutions, but operational, technical, training,
and systems solutions — across the complete lifecycle. As
a result, it is able to deliver high-quality, large, complex sys-
tems to market faster than ever. What’s more, when customer
requirements change, the company can show the impact of
those changes very quickly.

Improving Productivity with an
Integrated Development Platform

Companies that develop safety-critical systems are often
required to demonstrate that their development process
meets national and international safety standards. If their
development environment is fragmented, it’s difficult for them
to demonstrate compliance.

With a diverse set of development tools and development
teams spanning two major sites, another Australian company
needed to make some changes in order to ensure the success
of future projects. It provides safety-critical rail signaling and
control solutions around the world, and its customers require
backward compatibility with their existing rail equipment.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Systems Engineering For Dummies, IBM Limited Edition 68
The company needed an integrated development environment
that promoted compliance with global safety and reliability
standards. The company deployed a uniform requirements
and configuration management solution that not only fulfilled
customer requirements, but also enabled its dispersed devel-
opment teams to collaborate seamlessly.

Test Early, Test Often
Getting a prototype or executable model into the hands of
stakeholders early and often is incredibly valuable. Being able
to get early feedback on your concepts saves you pain later.

Being able to run simple tests as early as possible also pays off
during final testing. Giving early access to the testing teams, even
if they know the product is not really ready or is just a prototype
also helps them improve their test plans and procedures in the
same way it helps the designers check out their ideas.

Sharing Requirements to
Save Time and Money

It’s common for large development organizations to have
two or more geographically dispersed development teams
working on parallel releases with shared requirements. A lot
of time and effort could be saved if these teams had a mecha-
nism for sharing requirements.

A Michigan-based company is a leading global supplier of
mobile electronics and transportation systems. One of the
company’s goals was to improve communication among its
global development teams so they would be more productive
as they worked on parallel releases with shared requirements.

Implementing a requirements management tool made it easy
for the company’s developers to share requirements. They
can import requirements from a repository to re-use in a new
project, avoiding unnecessary duplication of effort, saving
time, and reducing development costs. Because the require-
ments management tool promotes consistency and enhances
collaboration, the company is able to deliver higher quality
products in a shorter amount of time.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

	Systems Engineering For Dummies®, IBM Limited Edition
	Contents at a Glance
	Introduction
	How This Book Is Organized
	Icons Used In This Book

	Chapter 1: Generating Smarter Products
	What’s So Smart about Smart Products?
	Catering to Customers
	Realizing that Smart Products are not Islands
	Identifying New and Exciting Challenges
	Probing Potential Pitfalls
	Recognizing the Need for a Paradigm Shift

	Chapter 2: Taming the Tiger with Systems Engineering
	Getting to Know Systems Engineering
	Exploring the Systems Engineering Process
	Managing Complexity with Models
	Speaking the Same Language
	A Good Picture is Worth a Thousand (or a Billion) Words

	Chapter 3: Revolutionizing Requirements
	Embracing a Philosophy of Change
	Understanding Context
	Diving into Requirements
	Creating Requirements Diagrams
	Driving Design Decisions with Requirements
	Juggling Requirements and Designs
	Linking Requirements to Testing
	Making Sure You Leave a Trace
	Rewarding Your Hard Work

	Chapter 4: Getting Abstract with System Modeling
	Modeling System Architecture
	Modeling System Behavior
	Mapping Out the Models
	Exploring Four Stages of System Modeling
	Understanding Why Modeling is in Fashion

	Chapter 5: Ensuring Tip-Top Quality
	Exploring Levels of Testing
	Testing Early, Testing Often
	The Devil Is in the . . . Interfaces

	Chapter 6: Enabling Large Teams to Collaborate and Manage Changes
	Learning from Facebook
	Getting Everyone on the Same Page
	Going Beyond E-mail and Document Sharing
	Deciding What’s Important to Share
	Exploring Ways to Facilitate Sharing

	Chapter 7: Ten Ways to Win with Systems Engineering
	Fixing Design Flaws before They Go Viral
	Engineering a Flexible Business Model
	Gaining Control of Complex Embedded Software
	Improving Efficiency with Requirements Consistency
	Leveraging Reusable Code to Accelerate Product Launch
	Streamlining Development with Collaboration Tools
	Delivering Complex Solutions to Market on Time
	Improving Productivity with an Integrated Development Platform
	Test Early, Test Often
	Sharing Requirements to Save Time and Money

. T
systems
Engineering

&

