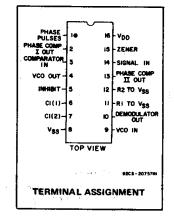


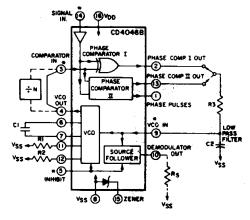
CMOS Micropower Phase-Locked Loop

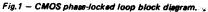
■ CD4046B CMOS Micropower Phase-Locked Loop (PLL) consists of a lowpower, linear voltage-controlled oscillator (VCO) and two different phase comparators having a common signal-input amplifier and a common comparator input. A 5.2-V zener diode is provided for supply regulation if necessary.


The CD4046B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

VCO Section

The VCO requires one external capacitor C1 and one or two external resistors (R1 or R1 and R2). Resistor R1 and capacitor C1 determine the frequency range of the VCO and resistor R2 enables the VCO to have a frequency offset if required. The high input impedance (1012 Ω) of the VCO simplifies the design of low-pass filters by permitting the designer a wide choice of resistor-tocapacitor ratios. In order not to load the low-pass filter, a source-follower output of the VCO input voltage is provided at terminal 10 (DEMODULATED OUTPUT). If this terminal is used, a load resistor (RS) of 10 $k\Omega$ or more should be connected from this terminal to VSS. If unused this terminal should be left open. The VCO can be connected either directly or through frequency dividers to the comparator input of the phase comparators. A full C'MOS logic swing is available at the output of the VCO and allows direct coupling to CMOS frequency dividers such as the RCA-CD4024, CD4018, CD4020, CD4022, CD4029, and CD4059 One or more CD4018 (Presettable Divide-by-N Counter) or CD4029 (Presettable Up/Down Counter), or CD4059A (Programmable Divide-by-"N" Counter), together with the CD4046B (Phase-Locked Loop) can be used to build a micropower low-frequency synthesizer. A logic 0 on the INHIBIT input "enables" the VCO and the source follower, while a logic 1 "turns off" both to minimize stand-by power consumption.


Features:


- Very low power consumption: 70 µW (typ.) at VCO f_o = 10 kHz, V_{DD} = 5 V
- Operating frequency range up to 1.4 MHz (typ.) at V_{DD} = 10 V, RI = 5 k Ω
- Low frequency drift: 0.04%/°C (typ.) at VDD = 10 V
- Choice of two phase comparators:
 Exclusive-OR network (I)
 Edge-controlled memory network with phase-pulse
- output for lock indication (II) # High VCO linearity: <1% (typ.) at V_{DD} = 10 V
- VCO inhibit control for ON-OFF keying and ultra-low standby power consumption
- Source-follower output of VCO control input (Demod. output)
- Zener diode to assist supply regulation
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- FM demodulator and modulator
- Frequency synthesis and multiplication
- Frequency discriminator
- Data synchronization
- Voltage-to-frequency conversion
- Tone decoding
- FSK Modems
- Signal conditioning
- (See ICAN-6101) "RCA COS/MOS Phase-Locked Loop – A Versatile Building Block for Micropower Digital and Analog Applications"

MAXIMUM RATINGS, Absolute-Maximum Values:

	DC SUPPLY-VOLTAGE RANGE, (VDD)
-0.5V to +20V	Voltages referenced to VSS Terminal)
	INPUT VOLTAGE RANGE, ALL INPUTS
	POWER DISSIPATION PER PACKAGE (PD):
	For $T_A = -55^{\circ}C$ to $+100^{\circ}C$
Derate Linearity at 12mW/°C to 200mW	
	DEVICE DISSIPATION PER OUTPUT TRANSISTOR
E (All Package Types) 100mW	FOR T _A = FULL PACKAGE-TEMPERATURE RANG
-55°C lo +125°C	OPERATING-TEMPERATURE RANGE (TA)
-65 ⁰ C to +150 ⁰ C	STORAGE TEMPERATURE RANGE (Tato)
	LEAD TEMPERATURE (DURING SOLDERING):
case for 10s max	At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from

Phase Comparators

The phase-comparator signal input (terminal 14) can be direct-coupled provided the signal swing is within CMOS logic levels [logic "0" $\leq 30\%$ (VDD-VSS), logic "1" $\geq 70\%$ (VDD-VSS)]. For smaller swings the signal must be capacitively coupled to the self-biasing amplifier at the signal input.

9208-29172

ANE PROTECTED

Phase comparator I is an exclusive-OR network; it operates analagously to an overdriven balanced mixer. To maximize the lock range, the signal- and comparator-input frequencies must have a 50% duty cycle. With no signal or noise on the signal input, this phase comparator has an average output voltage equal to VDD/2. The low-pass filter connected to the output of phase comparator

CD4046B Types

RECOMMENDED OPERATING CONDITIONS at T_A = Full Package-Temperature Range For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

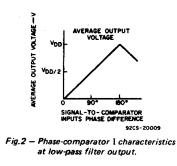
CHARACTERISTIC		LIMITS		
	Min.	Max.	UNITS	
Supply-Voltage Range VCO Section:			1	
As Fixed Oscillator	3	18	1	
Phased-Lock-Loop Operation	5	18	l v	
Supply-Voltage Range Phase Comparator Section:			1	
Comparators	3	18		
VCO Operation	5	. 18	1.1	

DESIGN INFORMATION

This information is a guide for approximating the values of external components for the CD4046B in a Phase-Locked-Loop system. The selected external components must be within the following ranges: 5 k $\Omega \le R1$, R2, R_S $\le 1 M\Omega$ C1 \ge 100 pF at V_{DD} \ge 5 V; C1 \ge 50 pF at V_{DD} \ge 10 V

Characteristics	Phase Comparator Used	Design Information					
		VCO WITHOUT OFFSET R2 = ∞	VCO WITH OFFSET				
VCO Frequency	1	1 MAX 10 1 27L 1 27L 2 2	10 121L 10 10 10 121L 10 10 10 10 10 10 10 10 10 10 10 10 10				
	2	Same as for No.1					
For No Signal Input	1	VCO will adjust to center fre	equency, f _o				
	2	VCO will adjust to lowest op	perating frequency, fmin				
Frequency Lock	1	$2 f_L = full VCO frequency r 2 f_L = f_{max} - f_{min}$					
Range, 2 fL	2	Same as for No.1					
Frequency Capture Range, 2 f _C	1	IN R3 OUT 0 0 0 11-R3C2 C2	(1), (2) 2 f _C $\approx \frac{1}{\pi} \sqrt{\frac{2\pi f_L}{\tau 1}}$				
Loop Filter Component Selection			For 2 f _C , see Ref. (2)				
	2	f _C = fL					
Phase Angle Between Signal and Comparator	1	90° at center frequency (f ₀) and 180° at ends of lock ran	approximating 0 ⁰ ge (2 fi)				
	2	Always 0° in lock	<u> </u>				
Locks On Harmonic of	. 1	Yes	·				
Center Frequency	2	No					
Signal Input	1	Hig	h				
Noise Rejection	2	Lov	N				

For further information, see


(1) F. Gardner, "Phase-Lock Techniques" John Wiley and Sons, New York, 1966 (2) G. S. Moschytz, "Miniaturized RC Filters Using Phase-Locked Loop", BSTJ, May, 1965. I supplies the averaged voltage to the VCO input, and causes the VCO to oscillate at the center frequency (fo).

The frequency range of input signals on which the PLL will lock if it was initially out of lock is defined as the frequency capture range (2f_c).

The frequency range of input signals on which the loop will stay locked if it was initially in lock is defined as the frequency lock range (2fL). The capture range is \leq the lock range.

With phase comparator I the range of frequencies over which the PLL can acquire lock (capture range) is dependent on the low-pass-filter characteristics, and can be made as large as the lock range. Phase-comparator I enables a PLL system to remain in lock in spite of high amounts of noise in the input signal.

One characteristic of this type of phase comparator is that it may lock onto input frequencies that are close to harmonics of the VCO center-frequency. A second characteristic is that the phase angle between the signal and the comparator input varies between 0° and 180°, and is 90° at the center frequency. Fig. 2 shows the typical, triangular, phase-to-output response characteristic of phase-comparator I. Typical waveforms for a CMOS phase-locked-loop employing phase comparator I in locked condition of f_0 is shown in Fig. 3.

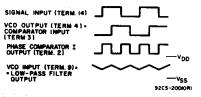


Fig. 3—Typical waveforms for CMOS phase-locked loop employing phase comparator in locked condition of fo.

Phase-comparator II is an edge-controlled digital memory network. It consists of four flip-flop stages, control gating, and a threestate output circuit comprising p- and n-type drivers having a common output node. When the p-MOS or n-MOS drivers are ON they pull the output up to VDD or down to VSS, respectively. This type of phase comparator acts only on the positive edges of the signal and comparator inputs. The duty cycles of the signal and comparator inputs are not important since positive transitions

3-125

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CONI	DITIONS		LIMITS AT INDICATED TEMPERATURES (°C				ITS AT INDICATED TEMPERATUR		°C)	U N I T
	Vo	VIN	VDD						+25	•	s
· · · · · · · · · · · · · · · · · · ·	(v)	(v)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.	
VCO Section											
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	. –	_
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-	
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mΑ
(Source)	2.5	0,5	5	2	-1.8	-1.3	-1.15	-1.6	-3.2	-	
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	
OH Min.	13.5	0.15	ົ15ິ	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	Term. 4	0,5	5		0.	05		+	0	0.05	
Low-Level,	driving	0,10	10		0.	05		-	0	0.05	
VOL Max.	CMOS	0,15	15	· ·	0.	05			0	0.05	V
Output]	0,5	5		4.	95		4.95	5		i .
Voltage:	e.g.	0,10	10		9.	95		9.95	10	_	
High-Level, V _{OH} Min.	Term.3	0,15	15		14.	95		14.95	15	-	
Input Current I _{IN} Max.	-	0,18	18	±0.1	±0.1	±1	±1		±10 ^{—5}	±0.1	μA
Phase Comparator S	ection				:						
Total Device	-	0,5	5			0.2		-	0.1	0.2	(· · ·
Current, IDD Max.	_	0,10	10	-		1		-	0.5	1	lmA
Term. 14 open,		0,15	15			1.5			0.75	1.5	
Term. 5 = V _{DD}	-	0,20	20			4 =-	<i>i</i>	—	2	4	
	_	0,5	5			20		-	10	20	
Term. 14 = V _{SS}	_	0,10	10			40		-	20	40	μA
or V _{DD} , Term. 5	_ :	0,15	15			80		_	40	80	1
= V _{DD}	-	0,20	20			160		_	80	160	
Outout I com	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_	
Output Low (Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6		1
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	- 1	1
Output High	4.6	0,5	5	-0.64	0.61	-0.42	-0.36	-0.51	-1	-	mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6		- 1	1
Current	9.5	0,10		-1.6	-1.5	-1.1	-0.9	-1.3		-	
OH Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	- 1	1
DC-Coupled Signal Input and Comparator Input										1.5	
Voltage Sensitivity			5			1.5		<u> </u>	-	1.5	1
Low Level	1,9		10	 		3	 			4	
VIL Max.	1.5,13.5		15			4		<u> </u>	<u> </u>	—	۲V
High Level	0.5,4.5	<u> </u>	5			3.5		3.5	<u> </u>	-	l
V _{IH} Min.	1,9	-	10	•		7		7	-	-	1
	1.5,13.5	-	15			11		11	-	1 -	

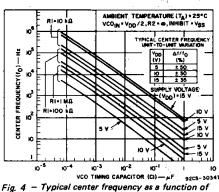
control the PLL system utilizing this type of comparator. If the signal-input frequency is higher than the comparator-input frequency, the p-type output griver is maintained ON most of the time, and both the n and p drivers OFF (3 state) the remainder

сå,

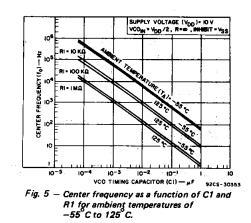
of the time. If the signal-input frequency is lower than the comparator-input frequency, the n-type output driver is maintained ON most of the time, and both the n and p drivers OFF (3 state) the remainder of the time. If the signal- and comparatorinput frequencies are the same, but the signal input lags the comparator input in phase, the n-type output driver is maintained ON for a time corresponding to the phase difference. If the signal- and comparator-input frequencies are the same, but

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CO	NDITIO	NS				ED TEMPERATURES (°C)				U N I	
	Vo			+25					+25		S S	
		(V)		55	-55 -40	+85	+125	Min.	Typ.	Max.		
Phase Comparator	Section	(cont'd)									
Input Current I _{IN} Max. (except Term 14)	Ι	0,18	18	±0.1	±0,1	±1	±1		±10-5	±0.1	μА	
3-State Leakage Current, ^I OUT Max.	0,18	0,18	18	±0.1	±0.1	±0.2	±0.2		±10 ⁻⁵	±0.1	μА	


*Limit determined by minimum feasible leakage current measurement for automatic testing.

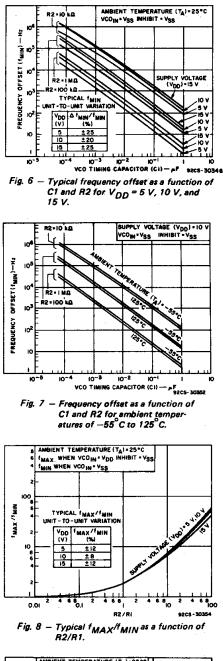
ELECTRICAL CHARACTERISTICS at TA = 25°C

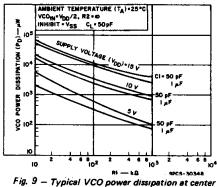

CHARAG- TERISTIC				V _{DD}	LIMITS ALL TYPES			UNITS
				(V)	Min.	Typ.	Max.	
VCO Section				,				
Operating Power Dissipation, P _D	f _o = 10 kHz R ₂ = ∞	R ₁ = ` VCO _{IN} =	1 MΩ V _{DD} 2	5 10 15	-	70 800 3000	_140 1600 6000	
Maximum Operatin g Frequency f _{max}	C ₁ =50 pF R ₂ = ∞ VCO _{1N} =V _{DD}	R ₁ = 1	10 kΩ	5 10 15	0.3 0.6 0.8	0.6 1.2 1.6		MHz
•	C ₁ = 50 pF R ₂ = ∞ VCO _{IN} =V _{DD}	R ₁ = {	ōkΩ	5 10 15	0.5 1 1.4	0.8 1.4 2.4	1 1 1	WITTZ
Center Frequency (f ₀) and Frequency Range (f _{max} —f _{min})	Programmal	ble with e		mponent: See Desigi			1.	
	VCO _{IN = 2.5 V}	′±0.3V,F	R ₁ =10 kΩ	5		1.7	_	
	=5 V ±		= 100 kΩ	10	_	0.5	_	-
Linearity			=400 kΩ			4		%
			= 100 kΩ			0.5	. —	
	= 7.5 V	±5V,	_= 1 MΩ	15		7	·· —	
Temperature – Frequency Stability: No Frequency Offset f _{MIN} = 0				5 10 15		±0.12 ±0.04 ±0.015	. .	%/°C
Frequency Offset ^f MIN ≠ 0				5 10 15	-	±0.09 ±0.07 ±0.03		<i>,</i> ,, C
Output Duty Cycle				5,10,15		50		%
Output Transition Times, ^t THL ^{, t} TLH				5 10 15		100 50 40	200 100 80	ns

the comparator input lags the signal in phase, the p-type output driver is maintained ON for a time corresponding to the phase difference. Subsequently, the capacitor voltage of the low-pass filter connected to this phase comparator is adjusted until the signal and comparator inputs are equal in both phase and frequency. At this stable point both pand n-type output drivers remain OFF and thus the phase comparator output becomes an open circuit and holds the voltage on the capacitor of the low-pass filter constant. Moreover the signal at the "phase pulses" output is a high level which can be used for indicating a locked condition. Thus, for phase comparator II, no phase difference exists between signal and comparator input over the full VCO frequency range. Moreover, the power dissipation due to the lowpass filter is reduced when this type of phase comparator is used because both the p- and n-type output drivers are OFF for most of the signal input cycle. It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range, independent of the low-pass filter. With no signal present at the signal input, the VCO is adjusted to its lowest frequency for phase comparator II. Fig. 10 shows typical waveforms for a CMOS PLL employing phase comparator II in a locked condition.

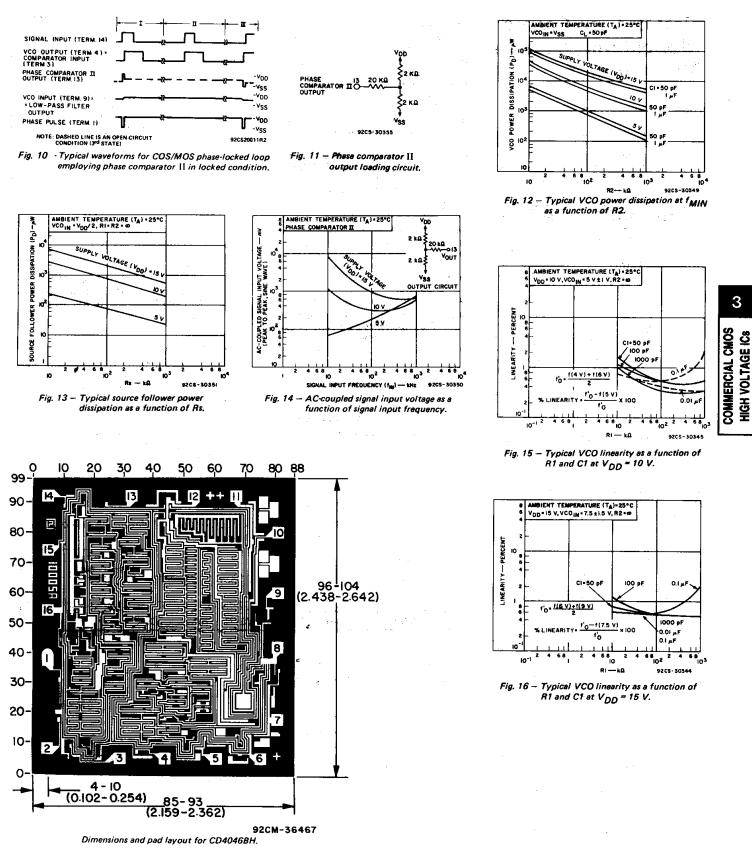
3




C1 and R1 at V_{DD} = 5 V, 10 V, and 15 V.



ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}C$


	TEO						
TERISTIC	TES	TCONDITIONS		A Min.	LL TYP Typ.	ES Max.	UNITS
VCO Section (cont	'd)		<u> </u>		.,,,,		
Source-Follower Output (Demodu- lated Output) : Offset Voltage VCO _{IN} VDEM	RS	5 10 15	-	1.8 1.8 1.8	2.5 2.5 2.5	v	
Linearity	R _S =100 kΩ = 300 kΩ =500 kΩ	VCO _{IN} = 2.5±0.3 V = 5±2.5 V = 7.5± 5 V	5 10 15		0.3 0.7 0.9		%
Zener Diode Voltage (V _z)	١ _Z	≠ 50 μA		4.45	5.5	6.15	v
Zener Dynamic Resistance, R _z	۱ ₂	z = 1 mA		_	40	-	Ω
Phase Comparator S	ection						
Term. 14 (SIGNAL IN) Input Resistance R ₁₄			5 10 15	1 0.2 0.1	2 0.4 0.2	 	MΩ
AC Coupled Signal Input Voltage Sensi- tivity* (peak- to-peak)		= 100 kHz, wave	5 10 15		180 330 900	360 660 1800	mV
Propagation Delay Times, Terms. 14 to t: High to Low Level, tPHL			5 10 15	-	225 100 65	450 200 130	ns
Low to High Level, tPLH			5 10 15		350 150 100	700 300 200	ns
3-State Propagation Delay Times, Terms. 3 to 13: High Level to High Impedance, ^t PHZ			5 10 15	-	225 100 95	450 200 190	ns
Terms. 14 to 13: Low Level to High Impedance, ^t PLZ			5 10 15	 	285 130 95	570 260 190	ns
Input Rise or Fall Times, t _r , t _f Comparator Input, Term. 3	See Fig. 5 fo output load	or Phase Comp. II ing	5 10 15		- -	50 1 0.3	μs
Signal Input, Term. 14			5 10 15	- - -		500 20 2.5	μs
Output Transition Times, ^t THL, ^t TLH			5 10 15		100 50 40	200 100 80	กร

7. 9 – Typical VCO power dissipation at cente frequency as a function of R1.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .