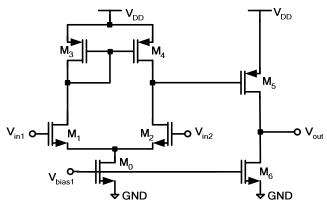

EECE488 Analog CMOS Integrated Circuit Design Assignment 3

Due: Tuesday March 22nd, 2011 at 9:30am

- 1. In the following circuit assume transistors M_1 and M_2 , and transistors M_3 and M_4 are identical and $\gamma = 0$:
- i) Find the expression for the small-signal differential voltage gain $(\frac{V_{out}}{V_{in1}-V_{in2}})$ of the circuit. [
- ii) What is the gain of the circuit at very low frequencies?
- iii) What is the gain of the circuit at very high frequencies?

- 2. Assuming that all transistors are in saturation, $\left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4$, and $\lambda = \gamma = 0$:
- i) Find an expression for I_{out}.
- ii) What would be the percentage change in I_{out} if V_{DD} is increased by 10%.
- iii) How would the expression for I_{out} derived in part (i) change if $\gamma \neq 0$ and why?

- 3. Design a two-stage op amp based on the topology shown below with the following design specifications:
 - $V_{DD}=3 V$
 - Total power consumption of 3 mW
 - Output swing of 2.6 V
 - Total gain of 1000
 - $L = 0.4 \mu m$ for all the device


Use the following assumptions for your design

- Allocate equal overdrive voltages to M₅ and M₆
- Assume the bias currents of the first stage and the second stage are equal.
- $V_{SG3}=V_{SG5}$

The technology parameters are:

$$\lambda_{(NMOS)} = \lambda_{(PMOS)} = 0.1 \ V^{-1}, \ \gamma = 0, \ V_{DD} = 3 \ V, \ V_{TH(NMOS)} = |V_{TH(PMOS)}| = 0.5 \ V, \ \mu_n C_{ox} = 1 \ mA/V^2, \ \mu_p C_{ox} = 0.5 \ mA/V^2.$$

Note: Use the parameter λ only for calculating the r_o of the transistors. **Do not** use λ in any other calculation including your bias currents.

Find V_{bias1}, and all the transistor widths (i.e., W₀,W₁, W₂, W₃, W₄, W₅, W₆).