EECE488 Analog CMOS Integrated Circuit Design Assignment 4 Due: Thursday March 28, 2013 at 9:30am

1. Assuming that the following circuit is symmetrical and $\gamma = \lambda = 0$:

i) Find the expression for the small-signal differential voltage gain $(\frac{V_{out}}{V_{in1} - V_{in2}})$ of the

circuit at very low frequencies.

- ii) What is the gain of the circuit at very high frequencies?
- iii) Repeat parts (i) and (ii) assuming $\lambda \neq 0$.

Note: In this question neglect all other capacitances that are not shown in the circuit.

2. In the following cascode circuit (typically referred to as self-biased cascode circuit) the resistor R is used to maintain a proper voltage to allow both M_1 and M_2 remain in saturation.

Assume both M_1 and M_2 have the same size W/L. Ignoring the channel length modulation and the body effect, show that for M_1 and M_2 to remain in the saturation region we should have:

$$\frac{2}{\mu_{p}C_{ox}\left(\frac{W}{L}\right)R^{2}} \le I_{ref} \le \frac{\left|V_{tp}\right|}{R}$$

3. Design a two-stage amplifier based on the topology shown below with the following design specifications:

V_{DD}=1.8V

- Total power consumption of 1.8 mW
- Differential output swing of 2.8V
- Total gain of 1000
- L=0.4µm for all the device

Use the following assumptions for your design

- The circuit is symmetric
- The bias currents of the first stage and second stage are equal (i.e., $I_0=I_5+I_6$).
- The magnitude of overdrive voltages of M₄, M₆, and M₈ are equal

The technology parameters are:

 $\lambda_{(NMOS)} = \lambda_{(PMOS)} = 0.1 V^{-1}$, $\gamma = 0$, $V_{DD} = 1.8V$, $V_{TH(NMOS)} = |V_{TH(PMOS)}| = 0.4V$, $\mu_n C_{ox} = 0.5 \text{ mA/V}^2$, $\mu_p C_{ox} = 0.25 \text{ mA/V}^2$.

Note: Use the parameter λ only for calculating the r_o of the transistors. <u>Do not</u> use λ in any other calculation including your bias currents.

Find V_{bias1}, V_{bias2}, and all the transistor widths (i.e., W₀, W₁, W₂, W₃, W₄, W₅, W₆, W₇, and W₈).

4. The unity-gain closed-loop buffer has a phase margin of 50° . What is the percentage of peaking in magnitude frequency response of the closed-loop system in the vicinity of the gain crossover frequency (i.e., the frequency at which the loop-gain is 1)?

Good luck