EECE 488: Analog CMOS Integrated Circuit Design Assignment 1 Due: Tuesday, February 14, 2012 at 9:30am

- 1. The transit frequency, f_T , of a MOS transistor is defined as the frequency at which the small-signal current gain of the device drops to unity while the source and drain terminals of the device are held at ac ground.
- a) Given that in the subthreshold region the drain current of the device is:

$$I_D = I_0 e^{\frac{V_{GS}}{\eta V_T}}$$

where $\eta \approx 1.5$ and V_T=kT/q (V_T=26mV at the room temperature), find an expression for the f_T of a MOS device that is operating in the subthreshold region.

- b) Compare the result of part (a) with the f_T of the same transistor operating in the active region and comment on the relative value of f_T of the transistor when it is operating in active region compared to when it is in subthreshold region.
- 2. In the following circuit, assuming that the transistor is operating in the saturation region:
- a) Find the required Vbias for which the dc value of the Vout is 1.44V.
- b) Is the assumption that the transistor is in the saturation region correct?
- c) Find the small-signal gain V_{out}/V_{sig} .

Assume $\lambda = 0$, $\gamma = 1V^{1/2}$, $2\Phi_F=0.64V$, $V_{TH0}=0.4V$, $\mu_n C_{ox} = 800 \ \mu A/V^2$, $(W/L)_{NMOS} = 20$, $R_D = R_S = 0.5k\Omega$, and $V_{DD}=1.8V$.

- 3. Use HSPICE and our 0.35-µm CMOS technology to:
- a) Verify whether two identical NMOS transistors (or two PMOS transistors) each having an aspect ratio of W/L when connected in parallel behave similar to a single NMOS (PMOS) transistor with the aspect ratio of 2W/L.
- b) Verify whether the structure shown below (sometimes referred to as series combination of two transistors) can be viewed as a single transistor of size W/(2L).

Good luck!