EECE488 Analog CMOS Integrated Circuit Design Assignment 2 Due: Tuesday February 9th, 2010 at 9:30am

1. a) Use HSPICE and 0.35 μ m CMOS technology library to plot the I_D-V_{DS} characteristic of an NMOS transistor with W=10 μ m and L=0.35 μ m for V_{GS}=0.5, 1, 1.5, 2, and 2.5V. b) Assuming that long channel quadratic equations for I_D holds, estimate the process parameters V_{th}, $\mu_n C_{ox}$, and λ for the transistor of part (a) using the I_D-V_{DS} plots or any other additional plot that you think may be useful.

c) Calculate g_m of the transistor in part (a) for each value of V_{GS} based on your estimated values in part b and long channel equations discussed in class. Compare the estimated g_m values with those calculated by HSPICE (using gmo parameter) and calculate the relative error.

2. Calculate the output resistance (V_X/I_X) of the following circuits. Assume $\lambda \neq 0$ and $\gamma \neq 0$.

3. Calculate the small-signal voltage gain of the following circuits. Assume $\lambda \neq 0$ and $\gamma = 0$.

Good luck