EECE488 Analog CMOS Integrated Circuit Design Assignment 2 Due: Tuesday February 28th, 2013 at 9:30am

1. Calculate the gain of the following circuit (i.e., provide an expression of the gain in terms of circuit parameters):

a) at very low frequencies

b) at very high frequencies.

In this problem, neglect all other capacitances that are not shown in the circuit and assume $\gamma = 0$ for all three transistors, while $\lambda_0 = \lambda_1 = 0$ and $\lambda_2 \neq 0$.

- **2.** Design a common-source amplifier with a diode-connected load based on the schematic shown below with the following design specifications:
 - Transistor M1 is in saturation
 - The minimum possible output voltage to keep M1 in saturation is 0.2V
 - Total power consumption of the amplifier is 3mW
 - Both transistors have L=0.5μm and for transistor M₂ we have W2=1 μm

The technology parameters are:

 λ (NMOS) = 0, γ = 0, V_{DD} =3V, V_{TH} (NMOS) = 0.5V, $\mu_n C_{ox}$ =1 mA/V²

Find the following values:

a) DC level of the input, b) DC level of the output, c) width (W_1) of transistor M_1 , d) small-signal gain, and e) Maximum output signal swing for a symmetric output signal.

3. In the following circuit assume that all transistors are operating in the saturation region. Also, assume that $\lambda = \gamma = 0$, $V_{DD} = 1.8V$, $V_{bias3} = 1.15V$, $V_{TH(NMOS)} = 0.4V$ and $V_{TH(PMOS)} = -0.4V$, $\mu_n C_{ox} = 800 \ \mu A/V^2$, $(W/L)_1 = 40$, $\mu_p C_{ox} = 400 \ \mu A/V^2$, $(W/L)_2 = 40$, $(W/L)_3 = 40$, and $R_S = 100\Omega$.

a) Find V_{bias1} such that the bias current of M_1 is $I_1=1mA$.

b) Calculate the small-signal voltage gain $A_{V1}=V_{out1}/V_{in}$.

c) Calculate the small-signal output impedance seen at the output node V_{out1} .

Good luck!