1. Calculate the gain of the following circuit (i.e., provide an expression of the gain in terms of circuit parameters):
 a) at very low frequencies
 b) at very high frequencies.
 In this problem, neglect all other capacitances that are not shown in the circuit and assume $\gamma = 0$
 for all three transistors, while $\lambda_0 = \lambda_1 = 0$ and $\lambda_2 \neq 0$.

2. Design a common-source amplifier with a diode-connected load based on the schematic shown below with the following design specifications:
 - Transistor M1 is in saturation
 - The minimum possible output voltage to keep M1 in saturation is 0.2V
 - Total power consumption of the amplifier is 3mW
 - Both transistors have $L=0.5\mu m$ and for transistor M_2 we have $W_2=1 \mu m$

 The technology parameters are:
 $\lambda(NMOS) = 0$, $\gamma = 0$, $V_{DD}=3V$, $V_{TH}(NMOS) = 0.5V$, $\mu_n C_{ox}=1 \text{ mA/V}^2$

 Find the following values:
 a) DC level of the input, b) DC level of the output, c) width (W_1) of transistor M_1, d) small-signal
 gain, and e) Maximum output signal swing for a symmetric output signal.
3. In the following circuit assume that all transistors are operating in the saturation region. Also, assume that \(\lambda = \gamma = 0 \), \(V_{DD}=1.8V \), \(V_{bias1}=1.15V \), \(V_{TH(NMOS)} = 0.4V \) and \(V_{TH(PMOS)} = -0.4V \), \(\mu_mC_{ox}=800 \mu A/V^2 \), \((W/L)_1 = 40 \), \(\mu_pC_{ox}=400 \mu A/V^2 \), \((W/L)_2 = 40 \), \((W/L)_3 = 40 \), and \(R_S=100\Omega \).

![Circuit Diagram]

a) Find \(V_{bias1} \) such that the bias current of \(M_1 \) is \(I_1=1mA \).
b) Calculate the small-signal voltage gain \(A_{V1}=V_{out1}/V_{in} \).
c) Calculate the small-signal output impedance seen at the output node \(V_{out1} \).

Good luck!