EECE488 Analog CMOS Integrated Circuit Design Assignment 2 Due: Tuesday October 15th, 2013 at 8:00 am

1. Consider the following circuit:

The technology parameters are:

 $\lambda_{(NMOS)} = \lambda_{(PMOS)} = 0 V^{-1}$, $\gamma = 0$, $V_{DD} = 3.0 V$, $V_{TH(NMOS)} = |V_{TH(PMOS)}| = 0.5V$, $\mu_n C_{ox} = 0.1 mA/V^2$, $\mu_p C_{ox} = 0.05 mA/V^2$, and $C_{ox} = 5 fF/\mu m^2$.

Assuming the transistor sizes are: $L_1=0.5 \ \mu m$, $L_2=4 \ \mu m$, $W_1=5 \ \mu m$, and $W_2=20 \ \mu m$, and furthermore, $V_{bias}=0.5 \ V$:

a) What is the region of operation of each transistor?

b) If the input signal, V_{in} , is a step function with a small magnitude of 10 mV (i.e., V_{in} abruptly changes from 0 V to 10 mV at time t = 0), what is $V_{out}(t)$ for t ≥ 0 ?

2. In the following circuit the DC current of M1 and M2 is 1 mA each and the current of M3 and M4 is 0.5 mA. Assume all transistors are in saturation and the aspect ration of transistors is as follows:

 $(W/L)_1 = 125$, $(W/L)_2 = 250$, $(W/L)_3 = 40$, and $(W/L)_4 = 80$.

a) Find g_m of all transistors and r_o of PMOS transistors.

b) Find the voltage gains V_{out1}/V_{in} and V_{out2}/V_{in}

The technology parameters are:

3. In this question, we will estimate the transistor parameters. We will use HSPICE to find these parameters for an NOMS and a PMOS transistor in the 0.35- μ m CMOS process used in our class. In all parts of this question, assume that the transistor has a width of W=3.5 μ m and length of L=0.35 μ m (unless otherwise specified) and V_{DD} = 3.0 V and use two V_{GS} (or V_{SG} in the case of PMOS) of 1 and 2 V. Please make sure to include your HSPICE code.

- a) Estimate λ for the NMOS and PMOS transistor (L=0.35 μ m) Hint: Draw I_D versus V_{DS} for the given values of V_{GS} and from the curve in saturation region estimate λ .
- b) Estimate $\mu_n C_{ox}$ and $\mu_p C_{ox}$. Are they equal? What is your intuitive conclusion on the speed of NMOS device versus PMOS?
- c) Increase the length to $L' = 3 \times 0.35 \ \mu m$ for both NMOS and PMOS and recalculate λ . What will happen to r_o ?
- d) For L=0.35 μ m, use DC sweep to change V_{BS} (body-source voltage) from 0 to V_{DD} and plot V_{th} versus V_{BS} for V_{GS} (or V_{SG} in the case of PMOS) of 1 and 2 V.
- e) Based on your estimated parameters n parts a and b and using the quadratic equation for the current of MOS transistor, calculate the current of the NMOS (W=3.5 μ m and L=0.35 μ m) for V_{GS} = 1.5 V and V_{DS} = V_{DD} = 3.0 V. Compare your calculated result with that of HSPIC simulation for the same NMOS transistor.