EECE488 Analog CMOS Integrated Circuit Design Assignment 3 Due: Thursday March 8th, 2012 at 9:30am

1. Calculate the gain of the following circuit at very low and very high frequencies. Neglect all other capacitances that are not shown in the circuit and assume $\lambda = \gamma = 0$.

2. In the following cascode circuit (typically referred to as self-biased cascode circuit) the resistor R is used to maintain a proper voltage to allow both M_1 and M_2 remain in saturation.

Assume both M_1 and M_2 have the same size W/L. Ignoring the channel length modulation and the body effect, show that for M_1 and M_2 to remain in the saturation region we should have:

$$\frac{2}{\mu_{p}C_{ox}\left(\frac{W}{L}\right)R^{2}} \le I_{ref} \le \frac{\left|V_{tp}\right|}{R}$$

- 3. Assuming the following two circuits are symmetric and $\gamma = 0$: and $\lambda \neq 0$:
- a) Find the expressions for the small-signal differential voltage gain of each circuit.
- b) Assuming that the corresponding transistors of each of the circuits are identical and the two circuits have the same small-signal differential voltage gain, find the relationship between R_1 and R_2 .

4. Assuming all the transistors in the following symmetric circuits are in saturation, $\lambda \neq 0$ (for the circuit on the right assume $\lambda = 0$) and $\gamma = 0$, calculate the small-signal differential voltage gain of each circuit.

