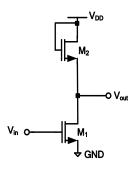

EECE488 Analog CMOS Integrated Circuit Design Assignment 3 Due: Thursday October 24th, 2013 at 8:00am

1. In the following circuit, assume that $\lambda = \gamma = 0$, $V_{DD} = 3V$, $V_{TH(NMOS)} = 0.5V$, $V_{TH(PMOS)} = -0.5V$, $\mu_n C_{ox} = 200 \ \mu A/V^2$, $\mu_p C_{ox} = 100 \ \mu A/V^2$. Furthermore, assume that V_{in} is a small-signal source and V_{bias1} and the DC level of V_{out1} and V_{out2} are all equal to $V_{DD}/2$. Also, the bias current of M_1 and M_2 are equal.

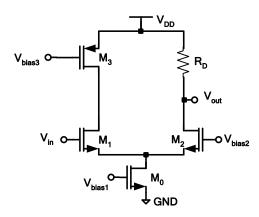

- a) What is the region of operation of M_1 and M_2 .
- b) If the overall power consumption is 3mW, find R_1 , R_2 , $(W/L)_1$ and $(W/L)_2$.
- c) What is the overall gain of the system, i.e., V_{out2}/V_{in} .

2. Design a common-source amplifier with a diode-connected load based on the schematic shown below with the following design specifications:

- Transistor M1 is in saturation
- The minimum possible output voltage to keep M1 in saturation is 0.2V
- Total power consumption of the amplifier is 3mW
- Both transistors have L=0.5μm and for transistor M₂ we have W2=1 μm

The technology parameters are:

 λ (NMOS) = 0, γ = 0, V_{DD} =3V, V_{TH} (NMOS) = 0.5V, $\mu_n C_{ox}$ =1 mA/V²



Find the following values:

- a) DC level of the input [5 marks],
- b) DC level of the output [5 marks],
- c) width (W_1) of transistor M_1 [5 marks],
- d) small-signal gain[5 marks]
- e) Maximum output signal swing for a symmetric output signal [5 marks].

3. The input impedance of a common-gate amplifier is typically low. To solve this problem one can use a buffer before the common-gate amplifier. For the following circuit (cascade of a common-drain amplifier and a common-gate amplifier), find the <u>small-signal gain</u>, <u>input</u> and <u>output</u> impedance. Assume that at the frequencies of interest all the device parasitic capacitances can be ignored. Also, assume:

 $\begin{array}{l} \lambda_{(\rm NMOS)}=0 \ V^{-1}, \ \lambda_{(\rm PMOS)}=0V^{-1}, \ \gamma=0, \ V_{\rm DD}=1.8V, \ V_{\rm TH(\rm NMOS)}=|V_{\rm TH(\rm PMOS)}|=0.4V, \ \mu_nC_{\rm ox}=1mA/V^2, \\ \mu_pC_{\rm ox}=0.5\ mA/V^2, \ (W/L)_0=32, \ (W/L)_1=16, \ (W/L)_2=16, \ (W/L)_3=32, \ R_D=1k\Omega. \end{array}$

Good luck!