EECE488 Analog CMOS Integrated Circuit Design Assignment 4 Due: Thursday March 18th, 2010 at 9:30am

1. Assuming all the transistors in the following symmetric circuits are in saturation, $\lambda \neq 0$ and $\gamma = 0$, calculate the small-signal differential voltage gain of each circuit.

2. In the following symmetric circuit, assume all transistors are operating in saturation region, $\lambda = 0$, and $\gamma = 0$.

a) Find an expression for the small-signal differential voltage gain of the following circuit.

b) What is the small-signal differential voltage gain if $(W/L)_3/(W/L)_5=0.5$?

3. In the following circuit all transistors have a W/L of $7\mu m/0.35\mu m$ and M₃ and M₄ are to operate in deep triode region with an on-resistance of 2kΩ. Assuming I₅=40 μ A and λ = γ =0, V_{DD}=3V, V_{TH(NMOS)}=0.5V, V_{TH(PMOS)}=-0.6V, $\mu_n C_{ox}$ =200 μ A/V², $\mu_p C_{ox}$ =100 μ A/V².

- a) Calculate the dc level of the input (input common-mode level) that yields such an onresistance for M_3 and M_4 .
- b) Calculate the required V_{bias} of the gate of M_5 .
- c) Calculate the small-signal differential gain, i.e., $(V_{out1}-V_{out2})/(V_{in1}-V_{in2})$, of the circuit when the input common-mode level is equal to value calculated in part a.

Good luck.