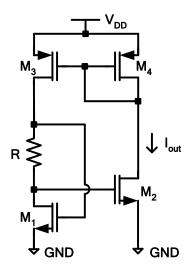

EECE488 Analog CMOS Integrated Circuit Design Assignment 4

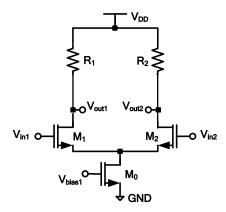
Due: Thursday March 15th, 2012 at 9:30am


2. In the follwing circuit assume that:

$$\lambda_{(NMOS)} = 0V^{-1}, \; \gamma = 0, \; V_{DD} = 3 \; V, \; V_{TH(NMOS)} = 0.5V, \; \mu_n C_{ox} = 1 \; mA/V^2$$

Furthermore, assume that $I_{out}=0.5$ mA and all transistors have the same size ($\frac{W}{L}$ = 40). Find the value of V_{bias} that results in the minimal voltage headroom consumption at node V_{out} . [10 marks]

2. Assumibng that all transistors are in saturation, $\left(\frac{w}{L}\right)_3 = \left(\frac{w}{L}\right)_4$, and $\lambda = \gamma = 0$, find an expression for I_{out} in terms of R, transistor parameters (e.g., μ and C_{ox}), and transistor sizes.



- 3. Design a symmetric differential amplifier based on the topology shown below with the following design specifications:
 - V_{DD}=3.0 V
 - Total power consumption of 3.0 mW
 - Output DC level of 1.5 V
 - Differential gain of 9 V/V
 - L=0.4 μm for all devices

Assume that the minimum required voltage at the drain of M_0 to keep it in saturation is 0.2 V.

The technology parameters are:

 $\lambda_{(NMOS)} = 0 \ V^{-1}, \ \lambda_{(PMOS)} = 0 V^{-1}, \ \gamma = 0, \ V_{DD} = 3.0 \ V, \ V_{TH(NMOS)} = |V_{TH(PMOS)}| = 0.5 V, \ \mu_n C_{ox} = 1 mA/V^2 \ .$

Find V_{bias1} , R_1 , R_2 , and all the transistor widths (i.e., W_0 , W_1 , and W_2).

Good luck.