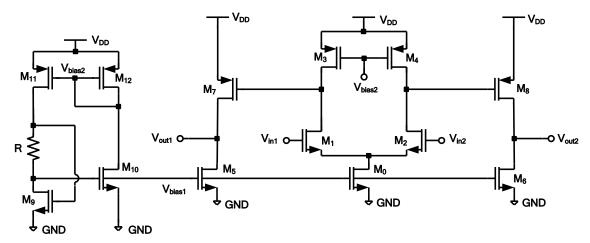

EECE488 Analog CMOS Integrated Circuit Design Assignment 4 Due: Tuesday November 26th, 2013 at 8:00am


1. Consider the following circuit. (This circuit is sometimes referred to as a self-biased current source).

Assume all transistors are operating in saturation region and $\lambda = \gamma = 0$, $V_{DD} = 3$ V, $V_{TH(NMOS)} = 0.5$ V, $V_{TH(PMOS)} = -0.5$ V, $\mu_n C_{ox} = 200 \ \mu A/V^2$, and $\mu_p C_{ox} = 100 \ \mu A/V^2$. Also, assume that M_0 , M_3 and M_4 have the same aspect ratio.

Given that $I_{out} = 50 \ \mu A$ and $(W/L)_1 = 16$, find R.

2. Design a two-stage differential to single-ended amplifier (op-amp) based on the topology shown below:

Use the following design specifications (Note that the gate of M_{12} is also connected to the gate of M_3):

- V_{DD}=1.8V
- Total power consumption of 1.98 mW
- Total gain of 4000
- L= $0.4 \mu m$ for all the devices
- $W_{11} = W_{12}$
- $W_9 = 4W_{10}$
- R=1 kΩ

Furthermore, assume:

- The op-amp circuit is symmetric
- The bias currents of the first stage and second stage are equal (i.e., $I_0=I_5+I_6$) and I_{11} is 10% of I_0 .
- The magnitude of overdrive voltages of M_4 , M_6 , and M_8 are equal

The technology parameters are:

 $\lambda_{(NMOS)} = \lambda_{(PMOS)} = 0.1 V^{-1}, \ \gamma = 0, \ V_{DD} = 1.8 V, \ V_{TH(NMOS)} = |V_{TH(PMOS)}| = 0.4 V, \ \mu_n C_{ox} = 1 \ mA/V^2, \ \mu_p C_{ox} = 0.5 \ mA/V^2.$

Note: Use the parameter λ only for calculating the r_o of the transistors. <u>Do not</u> use λ in any other calculation including your bias currents.

Find all transistor widths (namely, $W_0, W_1, W_2, W_3, W_4, W_5, W_6, W_7, W_8, W_9, W_{10}, W_{11}$ and W_{12}).

Good luck!