

EECE 488: Short HSPICE Tutorial

Last updated by: Mohammad Beikahmadi January 2013

SPICE?

- Simulation Program with Integrated Circuit Emphasis
- An open source analog circuit simulator
- Predicts circuit behavior, checks signal integrity, and optimizes circuit performance
- Why do we need it?
 - For IC, it's impossible to breadboard before manufacturing
 - Extremely high fabrication cost
 - Complex mathematic equations

Circuit Simulation Process

Types of Simulation

- **DC simulation**: steady state, constant source, operating point, sweep
- AC simulation: frequency response, small signal analysis, noise
- Transient simulation: observe circuit behavior with respect to time

Setting it up (some stuff taken from EECE 481 tutorial made by Nima and Dipanjan)

- Let's do the following:
 - Open a terminal
 - Create a directory eece488: **mkdir eece488**
 - Source the following file to set up HSPICE:
 - source /CMC/scripts/setenv.synopsys.hspice.2008.09.csh
 - Now we can use HSPICE!

Setting it up

- In order to check simulation results, we shall use WaveView Analyzer.
 - Type wv & and you should be able to see the following window:
 - If you need tutorials on how to use WaveView:

From menu bar -> Help -> Wave View Analyzer Help

Setting it up

• HSPICE Manuals

Name of Manual	Description
HSPICE User Guide:	Gives you the basics. How HSPICE works, the
Simulation and Analysis	file types, how to setup a circuit, how to run transient, DC and AC analyses.
HSPICE Signal Integrity User	Describes how to use HSPICE to maintain
Guide	signal integrity in your chip design.
HSPICE Reference Manual:	Describes the mathematical models used for
Elements and Device Models	passive devices, diodes, JFET's, MESFET's and BJT's.
HSPICE Reference Manual: MOSFET Models	Describes the mathematical models used for the various MOSFET models.

• For this course, you should only need the **simulation and analysis** guide!

Type: acroread /ubc/ece/data/cmc/experimental/tools/synopsys/hspice_vB-2008.09-SP1/hspice/docs_help/hspice_sa.pdf

- Well, actually, before writing the code (netlist), you need to have a circuit in mind!
- HSPICE does not provide schematic entry...
- Draw the circuit first
- Open a text file...let's use **gedit**, so type command **gedit &**
- From the schematic, we construct the circuit in HSPICE code in the text file -> Netlist

- For a normal netlist (file ends with extension .sp):
 - Title
 - Model library
 - Circuit structure
 - Stimuli
 - Type of simulation
 - .option post
 - .end

- Super simple HSPICE netlist example:
 - One constant voltage source in series with 2 resistors of same value
 - General component format: Name Positive_node Negative_node Value
 - Instruct HSPICE that it will be a DC sweep simulation
 - Syntax: .dc <source> <start> <stop> <step>
 - Finish the netlist and name it as simple_dc.sp

*simple dc circuit R1 X Y 1k R2 Y 0 1k V1 X 0 1 .DC V1 0 1 0.1 .option post .end

• Ready to simulate!

Use HSPICE - 2nd, run HSPICE to simulate!

Use HSPICE - 2nd, run HSPICE to simulate!

- Command to run HSPICE:
 - hspice simple_dc.sp >! temp.lis
 - hspice calls the program
 - **simple_dc.sp** is the name of netlist, extension is required
 - > tells HSPICE to output the results in the file following the symbol
 - ! tells HSPICE to replace the file if file of same name exists
 - temp.lis is the output file, you can change the name if you want

Use HSPICE - 2nd, run HSPICE to simulate!

- After you run HSPICE:
 - If you get the message saying hspice job concluded...it means that it has been compiled successfully without syntax error
 - If you get the message saying job aborted, then you have to go to the output file (.lis) to figure out your syntax error

Use HSPICE - 3rd, check results!

Use HSPICE - 3rd, check results!

- Now we can either check results through text file (.lis) or Wave View Analyzer
- Let's check our previous simple example using wv
 - Type wv &
- The analyzer has two sub-windows, the black one will show all of the important graphical information
- Check online documentation to get familiar with the program.

Use HSPICE - 3rd, check results!

- In the Wave View Analyzer window:
 - Click on File on top left corner
 - Click on "Import Waveform File"
 - Choose simple_dc.sw0 which is a waveform file produced after we run HSPICE
 - simple_dc.sw0 should show up on the Output View Window
 - Double click on simple_dc.sw0
 - A sub branch "top level view" should show and let's click it
 - Now you should be able to plot the things that you want to see, i.e. node voltages, etc

Another DC Simulation Example (with transistor)

- Plot $I_{\rm D}$ vs. $V_{\rm GS}$ for an NMOS device with W/L=5um/1um belonging to a 0.35um technology
 - We need to call the model library by including the following in the netlist:
 - .lib '/ubc/ece/home/courses/eece488/hspice/cmosp35/mm0355v.l' TT
 - Syntax for transistors:
 - Name Drain Gate Source Substrate Model_name Length Width
 - **M**1 Out In Gnd Gnd NCH I = 1um w = 5um

Another DC Simulation Example (with transistor)

- Draw the circuit and name all the nodes
- Generate netlist: nmos_sweep.sp
- Sweep the gate voltage
- Plot drain currents
- Look familiar?

Transient Simulation 1

- Dealing with time domain
- We want to look at the circuit in a time window
 - Syntax: .tran <t step> <t stop>
- Use of sinusoidal or pulse stimuli
- To construct a voltage pulse source:
 - PULSE V_lower V_higher delay rise_time fall_time pulse_width period
 - PULSE 0 5 0.01ps 0.01ps 0.01ps 2ns 4ns

Transient Simulation 1

- Simple Low pass RC circuit as an example
 - R1=1K Ohms, C1=1 uF
 - Vs: Periodic pulse

(pulse width= 5ms, period=10 ms, pulse height: 1 V)

- Netlist name: quick_tran.sp
- Showing the charging and discharging of capacitor

Transient simulation 2

- Let's take a look at a CMOS inverter
- Draw the circuit
- Enter the netlist (inverter.sp)
- Simulate!

AC Analysis Example

- When we do AC analysis, we are generally interested in the following
 - Gain/Magnitude measured in dB of power (20*log(#) -> dB)
 - Phase (degrees or radians)
- Sweep frequency -> Frequency response
- To do this in HSPICE
 - .AC DEC 5 1 100MEG (DEC = decade, 5 is # of points per decade, then range of frequency of interest)
 - To plot gain: .PRINT AC VDB(OUT, IN)

AC Analysis Example

- We shall do an ac analysis on a simple common source amplifier
- Common source means source is connected to the ground
- Draw the circuit, and label the nodes
- Enter the netlist (ac_analysis.sp)
- Simulate!

Subcircuits

- Use subcircuits to define a collection of elements and to create reusable circuits
- Syntax:
 .SUBCKT SUBNAME Node1 Node2 Node3 ...
 Element statements....
 .ENDS SUBNAME
- Using a subcircuit:

Xname Node1 Node2 Node3 ... SUBNAME

Subcircuit Example

• Define an inverter as a subcircuit and then use it to create and simulate a buffer (buffer.sp)

• Write a netlist for an inverter and then use .include statement to import the netlist in order to create the buffer's netlist (buffer2.sp)

Some Tips

- How to connect to school Linux machines
 - You will need SSH secure shell client
 - http://help.ece.ubc.ca/How_To_Tunnel_Connections_Through_SSH
 - An enhanced terminal for Windows: http://mobaxterm.mobatek.net/
- Open a terminal, and type ssh -X <u>your_ece_id@ssh.ece.ubc.ca</u>
- Enter password
- Boom you are connected!

Questions??!?!!

• No? ok have a nice day.