EECE488: Analog CMOS Integrated Circuit Design

Set 6

Frequency Response of Amplifiers

Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca

Simple Pole

Miller Effect

$$Z_2 = \frac{Z}{(1 - A_v^{-1})}$$

Board Notes

Miller Capacitive Multiplication

If the only signal path between X and Y is through impedance Z then Miller's theorem is typically not applicable.

Miller's Theorem is typically useful in the cases where there is impedance in parallel with the main signal path.

Main Signal Path

7

Poles and Nodes

Common Source

Common Source

Common Source

$$f_{p,out} = \frac{R_S (1 + g_m R_D) C_{GD} + R_S C_{GS} + R_D (C_{GD} + C_{DB})}{2\pi R_S R_D (C_{GS} C_{GD} + C_{GS} C_{DB} + C_{GD} C_{DB})}$$

$$f_{p,out} \approx \frac{1}{2\pi R_D (C_{GD} + C_{DB})}$$
, for large C_{GS}

$$f_{p,out} \approx \frac{g_m R_S R_D C_{GD}}{2\pi R_S R_D (C_{GS} C_{GD} + C_{GS} C_{DB} + C_{GD} C_{DB})}$$
$$\approx \frac{gm}{2\pi (C_{GS} + C_{DB})}, \text{ for large } C_{GD}$$

Right half plane zero, from the numerator of v_o/v_i

$$\frac{v_O}{v_i} = \frac{(s_{C_{GD}} - g_m)R_D}{s^2 R_S R_D (C_{GS} C_{GD} + C_{GS} C_{SB} + C_{GD} C_{DB}) + s [R_S (1 + g_m R_D) C_{GD} + R_S C_{GS} + R_D (C_{GD} + C_{DB})] + 1}$$

$$\frac{sC_{GD} - g_m}{\dots} \rightarrow f_z = \frac{+g_m}{2\pi C_{GD}}$$

Common Gate

Source Follower (Common Drain)

Source Follower Input Impedance

At low frequencies, $g_{mb} \gg |sC_L|$

$$Z_{in} \approx \frac{1}{sC_{GS}} (1 + g_m / g_{mb}) + 1 / g_{mb}$$

$$\therefore C_{in} = C_{GS} g_{mb} / (g_m + g_{mb}) + C_{GD} \quad (same \ as \ Miller)$$

At high frequencies,
$$g_{mb} \ll |sC_L|$$

$$Z_{in} \approx \frac{1}{sC_{GS}} + \frac{1}{sC_L} + \frac{g_m}{s^2C_{GS}}C_L$$

At high frequencies, overall input impedance includes C_{GD} in parallel with series combination of C_{GS} and C_{L} and a *negative* resistance equal to $-g_m/(C_{GS}C_L\omega^2)$.

Source Follower Output Impedance

17

Source Follower Output Impedance

Output impedance inductance dependent on source impedance, R_s!

Source Follower Ringing

Output ringing due to tuned circuit formed with C_L and inductive component of output impedance.

Cascode Stage

Cascode Stage

$$f_{pA} = \frac{1}{2\pi R_{s} \left[C_{GS1} + C_{GD1} \left(1 + \frac{g_{m1}}{g_{m2} + g_{mb2}} \right) \right]}$$

$$f_{pX} = \frac{g_{m2} + g_{mb2}}{2\pi (2C_{GD1} + C_{DB1} + C_{SB2} + C_{GS2})}$$

$$f_{pY} = \frac{1}{2\pi R_D (C_{DB2} + C_L + C_{GD2})}$$

Differential Pair

Differential Pair

23

Differential Pair

$$f_{p1} \approx \frac{1}{2\pi (r_{oN} \parallel r_{oP})C_L}$$

$$f_{p2} = \frac{g_{mP}}{2\pi C_E}$$

$$f_{Z} = 2f_{p2} = \frac{2g_{mP}}{2\pi C_{E}}$$