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General Considerations

 Gain

« Small-signal bandwidth

« Large-signal performance
e Output swing

e Input common-mode range
e Linearity

* Noise/offset

o Supply rejection
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One-Stage Op Amps
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One-Stage Op Amp in Unity Gain
Configuration
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Cascode Op Amps
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Unity Gain One Stage Cascode

SM ) 6
EECE488 Set 7 - Opamp Design



Folded Cascode Op Amps
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Folded Cascode Stages
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Folded Cascode (cont.)
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Folded Cascode (cont.)
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Telescopic versus Folded Cascode
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Example Folded-Cascode Op Amp
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Single-Ended Output Cascode Op Amps
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Triple Cascode
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Limited Output Swing

Complex biasing
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Output Impedance Enhancement
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Gain Boosting in Cascode Stage
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Differential Gain Boosting
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Differential Gain Boosting
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Differential Gain Boosting
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Two-Stage Op Amps

High Gain High Swing
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Single-Ended Output Two-Stage Op Amp
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Two-Stage CMOS Opamp

» Popular opamp design approach
A good example to review many important design concepts
« Output buffer is typically used to drive resistive loads

 For capacitive loads (typical case in CMOS) buffer is not
required.

Cc

||

iy
0_‘_
— — —
Differential Second Output
input stage gain stage buffer
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Two-Stage CMOS Opamp Example

Q10 Qi1 Q5 Voo Q6
|..1 25 ,|_J3oo |
25 I—-—II_ . I 300 Note!
'_ll lbias 500
' i | o
Q
Q14 | Q12 Q1 Q2
25 :||—-—||: 25 Viﬂ—o-ll‘: 300 300 :ll-o Vins Vout
| o
Q1 Cc
100 :||—.—|525 =
Q15 Q1 | 1
RB{ 300 500
150; H150 I" Ii:t
Q3 Q4 v ard  Q
Bias circuitry Differential-input Common-source Output
first stage second stage buffer
all transistor lengths = 1.6 um (1 um technology was used!)
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Gain of the Opamp

First Stage

Differential to single-ended

Al = 9m(rosllrgy)

W WY b
9 :JQMPCOX(T)IIDI = JZMPCOX(L)] éas

Second Stage

Common-source stage

Ay = =9 mi(Foell ro7)

Output buffer is not required when driving capacitive loads
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Gain of the Opamp

Third Stage

Source follower

N Ims
AVB: G
Ims + G +9mps T Gos + Joo

Typical gain: between 0.7 tol
Note: g,=1/r,and G =1/R,

O IS body-effect conductance (is zero if source can be tied to
substrate)
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Frequency Response
Q5

300
VbiasD—t‘r
Vin+ o

l

Q1 Q2
vin{,_||~_- 300 3oc:||__
Vi
150 b
15 | | = gml Vin _._|
Ceq = Cc(L+Ay)
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Frequency Response

Simplifying assumptions:
« C.dominates
e Ignore Q.4 for the time being (it is used for lead compensation)

Miller effect results in

Ceq = Cc(l + AE) = CcA2

« At midband frequencies

Zeg =To02

Al = 9mfeqg = 917/ (8CGA))
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Frequency Response

e Overall gain (assuming A; =1)
which results in a unity-gain frequency of

Wip = gml/CC

 Note: w,, Iis directly proportional to g,; and inversely
proportional to Ce.
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Frequency Response

 First-order model

A
20log (A1Ay)
Gain —20 dB/decade
(dB)
wia 09m1/Cc
| Fre
0 | )y > d
Wp1 “ra (log)
| |
0 [ I - Freq
Phase Wra
(log)
degrees
(degrees) 90
-180
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Slew Rate

 Maximum rate of output change when input signal is large.
Q5

300
VbiasO—I

Vin+c

Q1 Qe
VirHD-II‘_' 300 3oc~_-||_

A3|:|l

J —A2 oV
150¢ — » out
150:—_“ {I:li = Om1 Vin

Q3 4

« All the bias current of Q5 goes either into Q1 or Q2.
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Slew Rate
 Thus

out

dt

SHEdV _ ,Cc|max B IDS . 2"D]

Cc  Cc Cc

max

Ip, 1s nominal bias current of input transistors

. W
* Using C, = g,,,/00;,and g,,, = szpcox(ﬂ[)llm

21p,

SR =
J2u,C o (W/L) 1y,

Wig = Veff]ﬂ}ra

here V ]
WSS Vet = I C o (W7D,
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Slew Rate

SR = Veffl(’)ra

 Normally, the designer has not much control over w,,

« Slew-rate can be increased by increasing V

« This is one of the reasons for using p-channel input stage:
higher slew-rate
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Systematic Offset Voltage

« To ensure inherent (systematic) offset voltage does not exist,
nominal current through Q7 should equal to that of Q6 when the

differential input is zero.

Q5 Vbp
Vbiaso =|__f300

Q6

"l } o

Q1 Q2
Vin—o—II: 300 300 :||—o Vin+

II:fsoo

—0 Vout

150.3—{5150
f-l Q3 Q

SM
EECEA488 Set 7 - Opamp Design

33



Systematic Offset Voltage

» Avoid systematic offset by choosing:

(W/L),  (W/L),

(W/L), ~ “(W/L),

* Found by noting

Ips = 21p; = 21,

and
VGS? = VDSB = VGS4

then setting /., = [,
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N-Channel versus P-Channel Input Stage

 Complimentary opamp can be designed with an n-channel input
differential pair and p-channel second-stage

» Overall gain would be roughly the same in both designs
P-channel Advantages

« Higher slew-rate: for fixed bias current, V  Is larger (assuming
similar widths used for maximum gain)

 Higher frequency of operation: higher transconductance of
second stage which results in higher unity-gain frequency

« Lower 1/f noise: holes less likely to be trapped; p-channel
transistors have lower 1/f noise

* N-channel source follower is preferable (less voltage drop and

higher g.,,)
N-channel Advantage

« Lower thermal noise — thermal noise is lowered by high
transconductance of first stage

SM ) 35
EECE488 Set 7 - Opamp Design



SM

Feedback and Opamp Compensation

X a0

Feedback systems may oscillate

The following two are the oscillation conditions:

|AH (@) [F1
184 (jw) = -180
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Stable and Unstable Systems

Unstable
20logp H ()] ! Excessive
0 h -
P ey seale)
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Time-domain response of a feedback system
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H(s) = Ag
1+ @,
A
L=
1+
@y (L+ A,

SM

One-pole system

20log|p Mg &
20ogpAg

" o
6] = (log scale)

m (109 scale)

Bode plot of the Loop gain
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Multi-pole system

20og |p H (w)) A

Gain
Crossover

0
(i3 (log scale)
0 — -
o0° (o (log scale)
0la, >10a .
=180 F
JSBH @)Y

SM

Bode plot of the Loop gain
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Phase Margin

-20 dB/decade

Loop Gain
(dB)
20log (LG(jw))
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° | i ™ (10g)
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|
\
d \
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SM
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Phase Margin
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Phase Margin (Cont.)

PM =180+ OBH (w,, )

SM

20log [ H (w)| '

-
iy (log scale)

_ i (log scale)
-135'3 O

Phase Margin = 45
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Phase Margin= 45

SM

Phase Margin (Cont.)
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SM

HHV\;i:iv r[r}ymauﬂ g1} PM=g90
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Phase Margin (Cont.)

o]

=1

|
L iCH

At PM = 60° results in a small overshoot in the step response.

If we increase PM, the system will be more stable but the time
response slows down.

EECEA488 Set 7 - Opamp Design

45



Frequency Compensation

o
Modified
o - o Design
N\ log |
0 — 290 0
180 L e 180 o
w»
AL Modified  /BHIw T
Dasign
fah (kb
» Push phase crossing point out
* Push gain crossing point in
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Path 1

Telescopic Opamp (single-ended) -example

SM
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Compensation (Cont.)

» Assume we need a phase margin of 45 © (usually
Inadequate) and other non-dominant poles are athig  h
frequency.

-
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Compensation of a two-stage opamp

Ce

s SIS
Hu-uﬂ

il (i)

Miller Effect C, =C.+(1+A,)C,
_ 1
27R,[Cc + (1+ A,)Cc]

ju jm
Bafora
Compensation After
Compaensation
n » M= [~
o

T

pE
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Compensating Two-Stage Opamps

Q5 Q6
Vpias1 O_l’—l o Voo IE3OO
Q1 Q2
Vin-of= 300 300+ Vin+ L o Vour
Vpias?2
Q16 _T_ Cc
L H )|
Pl
‘ 300
153:“ :I:JlSO IE
Q3 Q4 Q
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Compensating Two-Stage Opamps

Vi
¢ ¢ '\/\, H ¢ * —

Im1VirD Rlé Ci In7V <> RoZ Co——

Q16 has Vg5 = 0 therefore it is hard in the triode region.

|
14
l'l'n Cf;i,x" ( Z ) 6 V(}‘f 16

« Small signal analysis: without R, a right-half plane zero occurs
and worsens the phase-margin.

Re = ryse =
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Compensating Two-Stage Opamps

* Using R (through Q16) places zero at
_ —1
~ Ce(1/g ;- Re)

W

« Zero moved to left-half plane to aild compensation
» Good practical choice is

0, = 1.20,

» satisfied by letting
1
- L2gp,

since 0;=9,,,/Coand o,=1/(R,Cp) if Rpg» /9,
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Design Procedure

Design example: Find C. with R-=0 for a 55° phase margin

SM

Arbitrarily choose C’'~=1pF and set R-=0

Using SPICE, find frequency w, where a —125° phase shift

exists, define gain as A’

Choose new C. so w, becomes unity-gain frequency of the

loop gain, resulting in a 55° phase margin.
Achieved by setting C.=C A’

Might need to iterate on C. a couple of times using SPICE

EECEA488 Set 7 - Opamp Design

53



Design Procedure

Next: Choose R according to

l
R~ =
C 7 120,C,

— Increasing w, by about 20 percent, leaves zero near final w;

— Check that gain continues to decrease at frequencies above the
new w,

Next: If phase margin is not adequate, increase C. while leaving
R constant.
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Design Procedure

Next: Replace R by a transistor

]
Re = rgsis = W

“'ncox(“[) " Veff](ﬁ

SPICE can be used for iteration to fine-tune the device
dimensions and optimize the phase margin.
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SM

Process and Temperature Independence

Can show non-dominant pole is roughly given by

_ _9m7
P27 C, + C,

)

Recall zero given by
—1
B Co(1/9,7—Re)

W

If R tracks inverse of g, then zero will track w;:

1
F? = f =
¢ ds16 “'HCOX(W/L)IGVeffIG

9m7 = “'ncox(W/L)?’Veff?’
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Process and Temperature Independence

* Need to ensure V Ve, IS Independent of process and
temperature variations
11 6
Vi Q425 Q 300
bias o—||_ |

]

2],

C
L 25 Q16.L “c |
Q1 I
VJ 300
- - Il:l Q7

* FirstsetV 3=V Which makes V_=V,
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Process and Temperature Independence

J 21 py :\/ 21py3
W.C.(W/0), ~ \u,C,(W/L),,
Ip,  (W/L),

Ipis — (W/L);

- Since V_ = V, and gates of Q12 and Q16 same

Vefﬂz = Veff16

Verrie  Verrin J 2155

J 21p5
V et B V etf13 B WpCox(W/ L) 5 B (W/L)y,
(W/L),,

LpCox(W/ L)y,
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Stable Transconductance Biasing

-Can bias on-chip g, to a resistor

LCZ'1D Q11_T -

&> I ) | I VGS]3 = VGS]S+!DI5RB
>~— | 2/pis _ 21pys A
ﬂ\'I'Ll”COX{W/L}H - "‘..'I.Llncax{uf/'[.}lﬁ D1atE

aia [@iz? <Butlp;; = Ips and rearrange

25 )| I 25 2 (W L),
: | J |- o8 = Ry
J2u,Co (WD) slpsl NW/L)s

*Recall g5 = 2u,C o) (W/L) 315
100 25

Q15 Qi3 } B (W7 L)y,
Rg § gm13 - 2|:l _/\/(W/L)]:_J /RB
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Stable Transconductance Biasing

Transconductance of Q,; (to the first order) is determined by
geometric ratios only.

Independent of power-supply voltages, process parameters,
temperature, etc.

For special case (W/L),s=4(W/L),4

Om13=1/Rg

Note that high-temperature will decrease mobility and hence
Increase effective gate-source voltages.

Roughly 25% increase for 100 degree increase
Requires a start-up circuit (might have all O currents)

60
EECEA488 Set 7 - Opamp Design



