General Considerations

- Gain
- Small-signal bandwidth
- Large-signal performance
- Output swing
- Input common-mode range
- Linearity
- Noise/offset
- Supply rejection
One-Stage Op Amps

One-Stage Op Amp in Unity Gain Configuration
Cascode Op Amps

Unity Gain One Stage Cascode
Folded Cascode Op Amps

Folded Cascode Stages
| $A_v| = g_m 1 \frac{1}{[(g_{m3} + g_{mb3}) r_{o3}(r_{o1} || r_{o5})][(g_{m7} + g_{mb7}) r_{o7} r_{o9}]]}$
Telescopie versus Folded Cascode

Example Folded-Cascode Op Amp
Single-Ended Output Cascode Op Amps

Triple Cascode

\[A_v \approx (g_{m_r} r_o)^{3/2} \]

Limited Output Swing
Complex biasing
Output Impedance Enhancement

\[R_{\text{out}} = A_1 g_m r_2 r_{o1} \]

Gain Boosting in Cascode Stage
Differential Gain Boosting

(a)

(b)

Differential Gain Boosting

(c)
Differential Gain Boosting

Two-Stage Op Amps
Two-Stage CMOS Opamp

- Popular opamp design approach
- A good example to review many important design concepts
- Output buffer is typically used to drive resistive loads
- For capacitive loads (typical case in CMOS) buffer is not required.
Two-Stage CMOS Opamp Example

Gain of the Opamp

- First Stage
 Differential to single-ended
 \[A_{v1} = g_{m1}(r_{o2} \parallel r_{o4}) \]
 \[g_{m1} = \sqrt{2\mu_p C_{ox}\left(\frac{W}{L}\right)} \frac{I_{D1}}{2} = \sqrt{2\mu_p C_{ox}\left(\frac{W}{L}\right)} \frac{I_{bias}}{2} \]

- Second Stage
 Common-source stage
 \[A_{v2} = -g_{m7}(r_{o6} \parallel r_{o7}) \]

- Output buffer is not required when driving capacitive loads
Gain of the Opamp

Third Stage

- Source follower

\[A_{V3} \approx \frac{g_{m8}}{g_{m8} + G_L + g_{mb8} + g_{o8} + g_{o9}} \]

- Typical gain: between 0.7 to 1
- Note: \(g_o = 1/r_o \) and \(G_L = 1/R_L \)
- \(g_{mb} \) is body-effect conductance (is zero if source can be tied to substrate)

Frequency Response

![Frequency Response Diagram]
Frequency Response

Simplifying assumptions:

- C_C dominates
- Ignore Q_{iB} for the time being (it is used for lead compensation)

Miller effect results in

$$C_{eq} = C_C(1 + A_2) \approx C_C A_2$$

- At midband frequencies

$$Z_{eq} = r_{o2} || r_{o4} || 1 / sC_{eq} \approx 1 / (sC_C A_2)$$

$$A_1 = g_{m1} Z_{eq} = g_{m1} / (sC_C A_2)$$

- Overall gain (assuming $A_3 \approx 1$)

$$A_v(s) = A_2 A_1 = g_{m1} / (sC_C)$$

which results in a unity-gain frequency of

$$\omega_{ta} = g_{m1} / C_C$$

- Note: ω_{ta} is directly proportional to g_{m1} and inversely proportional to C_C
Frequency Response

- First-order model

\[
\text{Gain (dB)} = 20 \log(A_1 A_2) \\
\text{Phase (degrees)} = -180 - 90 - \omega_p 1 \text{ (log)}
\]

Slew Rate

- Maximum rate of output change when input signal is large.

- All the bias current of Q5 goes either into Q1 or Q2.
Slew Rate

• Thus

\[SR = \frac{dV_{out}}{dt}_{\text{max}} = \left(\frac{I_{C1}}{C_C} \right)_{\text{max}} = \frac{I_{D1}}{C_C} = \frac{2I_{D1}}{C_C} \]

\(I_{D1} \) is nominal bias current of input transistors.

• Using \(C_C = g_{m1}/\omega_{ta} \) and \(g_{m1} = \sqrt{2\mu_p C_{ox}(W/L)_{1}I_{D1}} \)

\[SR = \frac{2I_{D1}}{\sqrt{2\mu_p C_{ox}(W/L)_{1}I_{D1}}_{\omega_{ta}}} = V_{eff1}\omega_{ta} \]

where \(V_{eff1} = \sqrt{\frac{2I_{D1}}{\mu_p C_{ox}(W/L)_{1}}} \)

Slew Rate

\[SR = V_{eff1}\omega_{ta} \]

• Normally, the designer has not much control over \(\omega_{ta} \)

• Slew-rate can be increased by increasing \(V_{eff1} \)

• This is one of the reasons for using p-channel input stage: higher slew-rate
Systematic Offset Voltage

• To ensure inherent (systematic) offset voltage does not exist, nominal current through Q7 should equal that of Q6 when the differential input is zero.

\[\frac{(W/L)_7}{(W/L)_4} = 2 \frac{(W/L)_6}{(W/L)_5} \]

• Avoid systematic offset by choosing:

\[I_{D5} = 2I_{D3} = 2I_{D4} \]

and

\[V_{GS7} = V_{DS3} = V_{GS4} \]

then setting \(I_{D7} = I_{D6} \)
N-Channel versus P-Channel Input Stage

- Complimentary opamp can be designed with an n-channel input differential pair and p-channel second-stage
- Overall gain would be roughly the same in both designs

P-channel Advantages
- Higher slew-rate: for fixed bias current, V_{eff} is larger (assuming similar widths used for maximum gain)
- Higher frequency of operation: higher transconductance of second stage which results in higher unity-gain frequency
- Lower 1/f noise: holes less likely to be trapped; p-channel transistors have lower 1/f noise
- N-channel source follower is preferable (less voltage drop and higher g_m)

N-channel Advantage
- Lower thermal noise — thermal noise is lowered by high transconductance of first stage

Feedback and Opamp Compensation

\[\frac{Y(s)}{X(s)} = \frac{H(s)}{1 + \beta H(s)} \]

- Feedback systems may oscillate
- The following two are the oscillation conditions:
 \[|\beta H(j\omega)| = 1 \]
 \[\angle \beta H(j\omega) = -180 \]
Stable and Unstable Systems

Time-domain response of a feedback system
One-pole system

\[H(s) = \frac{A_0}{1 + \frac{s}{\omega_0}} \]

\[\frac{Y(s)}{X(s)} = \frac{A_0}{1 + \beta A_0} \frac{1 + \frac{s}{\omega_0}}{1 + \frac{s}{\omega_0(1 + \beta A_0)}} \]

\[S_p = -\omega_0(1 + \beta A_0) \]

Bode plot of the Loop gain

Multi-pole system

\[0.1 \omega_{p2} > 10 \omega_{p1} \]

Bode plot of the Loop gain
Phase Margin

Closed loop frequency response

\[\hat{\beta} = 10e^{-175} \]

\[\left| \frac{Y(s)}{X(s)} \right| = \frac{11.5}{\beta} \]
Phase Margin (Cont.)

\[PM = 180 + \angle \beta H(\omega_{\text{in}}) \]

Phase Margin = 45°
Phase Margin (Cont.)

- At PM = 60° results in a small overshoot in the step response.
- If we increase PM, the system will be more stable but the time response slows down.

Frequency Compensation

- Push phase crossing point out
- Push gain crossing point in
Telescopic Opamp (single-ended) - example

Compensation (Cont.)

- Assume we need a phase margin of 45° (usually inadequate) and other non-dominant poles are at high frequency.
Compensation of a two-stage opamp

\[C_{eq} = C_E + (1 + A_{vz})C_C \]

\[f_p = \frac{1}{2\pi R_{out}[C_E + (1 + A_{vz})C_C]} \]

Compensating Two-Stage Opamps
Compensating Two-Stage Opamps

Q16 has $V_{DS16} = 0$ therefore it is hard in the triode region.

$$R_C = r_{ds16} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)_{16} V_{eff16}}$$

Small signal analysis: without R_C, a right-half plane zero occurs and worsens the phase-margin.

Compensating Two-Stage Opamps

Using R_C (through Q16) places zero at

$$\omega_z = \frac{-1}{C_C \left(1 / g_{m7} - R_C\right)}$$

Zero moved to left-half plane to aid compensation

Good practical choice is

$$\omega_z = 1.2 \omega_I$$

satisfied by letting

$$R_C \approx \frac{1}{1.2 g_{m1}}$$

since $\omega_I \equiv g_{m1} / C_C$ and $\omega_z \equiv 1 / (R_C C_C)$ if $R_C \gg 1 / g_{m7}$
Design Procedure

Design example: Find C_C with $R_C=0$ for a 55° phase margin
- Arbitrarily choose $C'_C=1\text{pF}$ and set $R_C=0$
- Using SPICE, find frequency ω_t where a -125° phase shift exists, define gain as A'
- Choose new C_C so ω_t becomes unity-gain frequency of the loop gain, resulting in a 55° phase margin.
 Achieved by setting $C_C=C_C A'$
- Might need to iterate on C_C a couple of times using SPICE

Next: Choose R_C according to

$$R_C = \frac{1}{1.2 \omega_t C_C}$$

- Increasing ω_t by about 20 percent, leaves zero near final ω_t
- Check that gain continues to decrease at frequencies above the new ω_t

Next: If phase margin is not adequate, increase C_C while leaving R_C constant.
Design Procedure

Next: Replace R_C by a transistor

$$R_C = r_{ds16} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L} \right)_{16} V_{eff16}}$$

SPICE can be used for iteration to fine-tune the device dimensions and optimize the phase margin.

Process and Temperature Independence

- Can show non-dominant pole is roughly given by

$$\omega_{p2} \equiv \frac{g_{m7}}{C_1 + C_2}$$

- Recall zero given by

$$\omega_z = \frac{-1}{C_C(1/g_{m7} - R_C)}$$

- If R_C tracks inverse of g_{m7} then zero will track ω_{p2}:

$$R_C = r_{ds16} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L} \right)_{16} V_{eff16}}$$

$$g_{m7} = \mu_n C_{ox} \left(\frac{W}{L} \right)_{7} V_{eff7}$$
Process and Temperature Independence

- Need to ensure $V_{\text{eff}16}/V_{\text{eff}7}$ is independent of process and temperature variations

- First set $V_{\text{eff}13} = V_{\text{eff}12}$ which makes $V_a = V_b$

Process and Temperature Independence

$$\sqrt{\frac{2I_{D7}}{\mu n C_{ox}(W/L)_{7}}} = \sqrt{\frac{2I_{D13}}{\mu n C_{ox}(W/L)_{13}}}$$

$$\frac{I_{D7}}{I_{D13}} = \frac{(W/L)_{7}}{(W/L)_{13}}$$

- Since $V_a = V_b$ and gates of Q12 and Q16 same

$$V_{\text{eff}12} = V_{\text{eff}16}$$

$$\frac{V_{\text{eff}7}}{V_{\text{eff}16}} = \frac{V_{\text{eff}13}}{V_{\text{eff}12}} = \frac{\sqrt{2I_{D13}/\mu n C_{ox}(W/L)_{13}}}{\sqrt{2I_{D12}/\mu n C_{ox}(W/L)_{12}}} = \sqrt{\frac{(W/L)_{12}}{(W/L)_{13}}}$$
Stable Transconductance Biasing

- Transconductance of Q_{13} (to the first order) is determined by geometric ratios only.
- Independent of power-supply voltages, process parameters, temperature, etc.
- For special case $(W/L)_{13} = 4(W/L)_{15}$

\[
g_{m13} = \frac{1}{R_B}
\]

- Note that high-temperature will decrease mobility and hence increase effective gate-source voltages.
- Roughly 25% increase for 100 degree increase
- Requires a start-up circuit (might have all 0 currents)