ELEC 421 - Assignment \#1

1. Computer the Fourier transform of the following signals.
(a) $x(n)=\delta(n)+\delta(n-2)+u(n)-u(n-2)$
(b) $x(n)=\{-1,2,3,2,1\}$
(c) $\mathrm{x}(\mathrm{n})=\mathrm{a}^{\mathrm{n}} \sin \left(\omega_{0} \mathrm{n}\right) \mathrm{u}(\mathrm{n}),|\mathrm{a}|<1$
(d) A signal $x(n)$ has the Fourier transform $X(w)$, determine the Fourier transform of $y(n)=x(n) \sin \left(\omega_{0} n\right)+x(n-1)$, where $X(\omega)=\frac{1}{1-0.8 e^{-j \omega}}$.
2. For the sequence, $\mathrm{N}=6 . \quad x_{1}(n)=\cos \left(\frac{2 \pi}{N} n\right)+\delta(n)$, and $x_{2}(n)=u(n)-\delta(n-1)$,

$$
0 \leq n \leq N-1 .
$$

(a) Suppose $\mathrm{N}=6$. Determine the N -point DFT of $\mathrm{x}_{1}(\mathrm{n})$.
(b) Determine the 2 N -point DFT of $\mathrm{x}_{1}(\mathrm{n})$ by zero-padding first. What is their relationship?
3. Determine the 8 -point DFTs of the following signals
(a) $x(n)=\{1,0,1,0,0,0,0,0\}$.
(b) $x(n)=a^{n},|a|<1,0<=n<=7$.
4. Consider the sequence $\mathrm{x}_{1}(\mathrm{n})=\{1,1,0,0\}$ and $\mathrm{x}_{2}(\mathrm{n})=\{1,1,3,6\}$.
(a) Given the 4-point DFT of the sequence $\mathrm{x} 1(\mathrm{n})$, compute the DFT of the sequence $\mathrm{y}(\mathrm{n})=\{1,0,0,1\}$.
(b) Determine a sequence $y(n)$ such that $Y(k)=X_{1}(k) X_{2}(k)$.
(c) Calculate the linear convolution $\mathrm{x}_{1}(\mathrm{n})^{*} \mathrm{x}_{2}(\mathrm{n})$ by using DFT.

