Fault Injection: Techniques, Tools
and Tricks

EECE 513: Design of Fault-tolerant
Systems

Learning Objectives

Define fault-injection and explain its uses
Design a fault-injection experiment for
measuring reliability

Apply software and hardware techniques for
fault injection

Apply formal techniques for the assessment of
fault tolerance

Dependability Evaluation

Dependability Evaluation Techniques

|
! }

Model-Based Measurement-based
I
| ;)
l l Fault-injection Real failures
Analytical Simulation l

——

Design Prototype Operational

Fault-injection

* Fault-injection (or fault-insertion) is the act of
deliberately introducing faults into the system
in a controlled and scientific manner, in order
to study the system’s response to the fault

— Can be used to estimate coverage of dependability
mechanisms (e.g., detection, recovery)

— Also used to understand inherent fault tolerance

— To obtain reliability estimates of the system prior
to deployment (requires statistical projection)

Why fault-injection ?

* Versus Model-based
— More realistic, as it evaluates actual system
— No need to worry about mathematical feasibility
— No need to supply input parameters

* Versus operational measurements

— Failures take a *long™ time to occur and when they do, are
often not reproducible or analyzable

— Failures provide limited insight into what *can™* go wrong

— One has to wait until the system is deployed, which may be
too late

Learning Objectives

Define fault-injection and explain its uses
Design a fault-injection experiment for
measuring reliability

Apply software and hardware techniques for
fault injection

Apply formal techniques for the assessment of
fault tolerance

Fault Injection Spec’s ';’" ﬂ """"""""""""" C"\"“ Workload SDec’sé
- :‘ :-5—:;@{‘} %\.\x ... t)" ..
Injection Strategy L |t \\ﬁg % Fault Rates and Mixes
Stress-based i A i’ - Injector « Interaction
path-based ! £ J%g Intensity
Random :]
Injection Method E Workload
by hardware ! Generator
by software |
Fault Location E
CPU : System
Memory !
disk 1/0 A CPU MEMORY 1O Under
network I/O \ Test
Other I/Os \
Injection Time N \ ‘ /
load threshold N
program execution path . \ Y 4
fault arrival rate ~Load

Level ™

Measure

Fault-injection Steps

|dentify
fault-injection
points and times

Inject fault at the
appropriate time
and point

Collect the
outcome of the
expt.

Choose workload
and platform to
inject

Start workload
on platform with
instrumentation

Compare the
outcome with
the correct one

Fault-injection: Inputs/Outputs

* Inputs
— Workload and platform to inject ?
— When and where to inject ?
— How many faults to inject (total) ?

* Outputs
— How many faults were activated ?
— How many faults cause a deviation of the outcome ?
— What is the latency of manifestation ?

Measures to Compute

Activation Latency Failure Latency
- 2

A A

Fault Fault Fault
injected Activated manifested

hat fraction of injected faults are activated ?
hat fraction of activated faults manifest as failures ?
nat are the average activation and failure latencies ?

= ==

Assumptions/Requirements

* A representative set of faults must be injected

— Need to include enough faults to give confidence in
the measures being studies

* Typically only one fault injected in each run
— Ability to map the outcome to a set of faults

* Need to have a specification of correct behavior
to distinguish incorrect outcomes

— May need to determine golden run ahead of time

Learning Objectives

Define fault-injection and explain its uses
Design a fault-injection experiment for
measuring reliability

Apply software and hardware techniques for
fault injection

Apply formal techniques for the assessment of
fault tolerance

Levels of Fault-Injection

* Fault-injection can be performed at multiple
levels, from hardware to software

* Three things to consider in choosing level

— Type of fault to inject (e.g., stuck at faults easier to
inject in the hardware than in software)

— Speed of injection (e.g., h/w simulation slower than
real execution, though direct h/w probes possible)

— Intrusiveness (e.g., probing hardware result in physical
modifications that change the system’s characteristics)

Fault-Injection and Fault-Models

Hardware

Open

Bridging

Stuck-at

Power Surge
Spurious Current
Bit-flip

Software

Storage Data Corruption
— Registers, Memory, Disk

Communication data
corruption

— CRC errors, Bus Errors

Software defect emulation

— Machine code corruption,
source code mutation

Hardware fault-injection

Contact-based Non-contact based

* Active Probes: Alters the * Heavy-ion Radiation: Put the
current via probes attached to chip in an accelerator beam
the pins

— Usually limited to stuck-at- (e.g., TRIUMF, Los Alamos)

faults, though bridging faults — Difficult to control and
can also be modeled reproduce

— Care must be taken to not

damage the pins — But injects realistic faults

— No restriction on where faults

* Socket based: Insert a socket can be injected
between the target hardware

and the circuit board . o .
— Can inject stuck-at or other Placing chip in an EM field

logical faults — Can lead to permanent damage

H/W Fault-Injection: Example
(Contact Based)

Cperator

< T

A~ _—

_ Output files

)

| Input files |

— = Management of the test sequence

g |

Control of the experiment

Environment
Simulation Activation Injection ’ Data collection
a RESy ‘ i
Initialization Fault t
Inputs/outputs) Synchronization Readouts
[- Target system

Messaline from CNRS [Arlat’1990]: Can perform probe-based and socket-based
injection. used for evaluating safety-critical systems such as railway control system

Hardware Fault-Injection
(Non-contact Based)

Inside vacuum chamber

Reset
R SR
Reference CPU Test CPU
Data [l
i
External External
bus . bus
L .| Comparator
error flip-flops
Trigger| External Serial {yroory
99 port ! !
bus :
x Commands and
Error Lagic :
data analyzer program loading
Error
data
Host Error data Monitoring
computer [*——— computer Reset

FIST from Chalmers [Karlson’1995]: Used a Vaccum chamber in which an ionizing
source was placed. A second non-faulty processor was used for state comparision.

Software-based Fault-Injection (SWIFI)

Pros Cons
* Do not require expensive * Restricted to inject only
hardware modifications faults that S/W can see

* May perturb the workload
that is running on the
system, resulting in missing
many heisenbugs

e (Can target applications and
OS errors

 Many hardware faults do

not require probes, e.g, * Coarser-grained time
register data corruption resolution than h/w

SWIFI: Types

Compile-time

Modify source code or
machine code of the
program prior to execution

Can be used to model
software defects

Requires going thro’
compile-run cycle each time

Runtime

Modify the program or its
data during runtime

Can be done through the
debugger, kernel or with
support from compiler

No need to go through
compile-run cycle each time

Compile-time Injection

* Modify program’s code prior to execution
— Model hardware transient faults in machine code
— Also, allows for modeling of software errors

* Example of software errors modeled
— Missing initialization (corrupt initialized value)

— Incorrect conditionals (Change <= to <)

Example: G-SWIFT

P R R Somol el X E—— Temet Low-avaltoza Law avel rutates
P Ty ol gzplisiien rrutsting 1021 varaicns
. oz noz o
\ b sonzizd maze Y Jiggl] - jolkis
T " L — D0G HY 7R
e # 7 e ﬁ ol ann
-
\\‘ s\-,r \\
Tanhele e if i I, Lol
s la:.ln “Fault o leezl [— = annh X '.:;lf:ll'l
s nzsloe R T cnubbon I D
ok . ruiatlang |brary L,
t Cranged Sk | operaters . -7
Flsld dada 3 ¥ersons REEES

Ref: Emulation of Software Faults: A Field-study and a practical approach, J.A.
Duraes and H.S. Madeira, IEEE Trans on Soft. Engg, Vol 32, No. 11, 2006.

* |njects compile-time faults in the machine code

— Search Patterns: Patterns of machine code that
represent common high-level programming constructs

* Mutation based on Orthogonal Defect Classification (ODC)

— Low-level Faults: Faults in a single machine-code insn
* Mutation based on flipping bits of instructions

Example: G-SWIFT

* Missing Function Call
(Search pattern)

* Look through the
machine code for
patterns corresponding to
a function call and replace
it with No-ops

* Need to replace return
value with its prior value

Missing variable
Initialization (low-level)

Find the instruction that
assigns a constant to the
variable and replace it by
a Noop or randomly
perturb the constants

G-SWIFT: Results

* Ability to emulate almost source-level faults
according to ODC at the machine code level

— Most discrepancies due to the use of C macros

Program Source-level Faults | Machine-code
faults

Gzip 71 80
Lzari 110 117
Camelot 67 75

Results found to hold across a range of compilers and architectures.

Runtime Injection

* Advantages
— Can inject faults without recompiling - speed

— Faults can occur deeper in the execution. e.g., one-
millionth iteration of a loop

— Fault can depend on runtime conditions. e.g., if
memory usage exceeds a threshold, inject fault

* Examples of faults: Timeouts, dynamic code
injection, resource exhaustion, data corruption

Example: NFTAPE

Framework for conducting automated fault/error injection
based dependability characterization

Enables user to:
— specify a fault/error injection plan
— carry on injection experiments

— collect the experimental results for analysis

Facilitates automated execution of fault/error
Injection experiments

Enables assessment of dependability metrics
including availability, reliability, and coverage

Operates in a distributed environment

NFTAPE Features

Debugger-based fault injector

— injection to the target process memory and registers
Driver-based fault injector

— injection to memory, registers, OS components

Use of performance monitors (built into CPUs)

— trigger fault injection; measure error latency

Fault injection targets

— CPU registers, memory, applications, specific OS functions
Fault injection triggers:

— random (based on time), application supplied breakpoint,
externally supplied breakpoint

26

Injection Targets and Outcome Categories

Target User space
Code Functions: e.g., main
Instructions: any or selected subset (e.g., branch, load, store)
Data Static data and dynamically allocated memory (heap)
Stack Data on an application stack

CPU Registers

General purpose registers

Memory range

Any location in application memory space

Outcome Category

Description

Activated

The corrupted instruction/data is executed/used.

Not Manifested

The corrupted instruction/data is executed/used, however it does not cause a
visible abnormal impact on the system.

Fail Silence Violation

Either operating system or application erroneously detects the presence of an
error or allows incorrect data/response to propagate out. Workload programs are
instrumented to detect errors.

Application/OS stops working, e.g., bad trap or system panic.

Crash Crash handlers embedded into OS are enhanced to enable dump of failure data
(processor and memory state).
Hang System resources are exhausted resulting in a non-operational

application/system, e.g., deadlock or livelock .

27

NFTAPE Framework Configuration

Error Injection Targets

Control Host

Process
Manager

Process
Manager

28

NFTAPE: Results

Used to evaluate NASA’s space imaging
application: Part of MARS REE project

Fault injections performed in memory

a) Regularimage

b) Image with random noise

c) Application output with no faults

d) Application output with NFTAPE
injecting faults

Injecting register 15 (O7) bit 26 from value ef6esS544

pr_why: Ox6 reason="Faulted’(6) fault=Bounds(6) 'BUS"{il): ‘unmapped addr- (1)
acdr=ebbtebtbdic trapno=0
pr_brkbase: 00i0ed%éc pr brksize: 5604004 pr stkbase: of££4000 pr_stksize: al00
G: 00000000 ebéeti44 04000000 Q00COOCD COOCOCOO 0OBOCOOC QU0OCOOCD DOCOOCO
Q: 00000000 DOO20UbED £££££a80 00000001 COO0OCODO VODOCOOD efffficl ebbetdd
L: 00000000 00000000 00000000 90000000 00000000 00000000 Q0000000 0000000

I: 00079000 0O0C00000 0003bes84 Q00000000 ef£72227C ef6C675C effffI530 eféesdl
Figure 4. Images from Space Imaging Application. jcj.fe401003 PeeebbesSic nPCebEeE550 ¥«00000000 WIN-00000000 ZER=0000000

Learning Objectives

Define fault-injection and explain its uses
Design a fault-injection experiment for
measuring reliability

Apply software and hardware techniques for
fault injection

Apply formal techniques for the assessment of
fault tolerance

Validation of FTMs

Detector Validation

Fault-injection Formal Verification

Formal Verification — Complements Fl by exposing
corner-case scenarios in error and attack detectors

31

SYymPLFIED: Existing Techniques

Program Fault-tolerance
Verification: Finding Validation : Specific
software bugs in to fault-tolerance
programs mechanism

Need for a formal framework to evaluate the effects of hardware errors on
arbitrary programs independent of detection mechanism

Hardware Fault-tolerant
Verification: Finding algorithms:
design errors in Assumes specific
circuits application model

Formal Framework for Detector Validation

Assembly Input: Application protected with
Language Program embedded error detectors

SymPLFIED
Formal ym

Verification Model-
Technique checking Execution

Symbolic

Enumeration of all
errors that escape
detection

Output: Understanding of the
limitations of error detectors

33

SYymPLFIED : Approach

® Analyze program written in MIPS assembly language
= Low-level state made explicit (e.g., stack pointer)
= Oblivious to post compile-time transformations
= Both programs and libraries (statically linked)

= Generic representation of error detectors
= Allow arbitrary error detectors to be specified in program

= Fault Model: H/W transients (memory/register/PC)

= Comprehensive enumeration of undetected errors
that lead to program failure = detector defects

SymPLFIED: Symbolic Execution

= Exhaustive
enumeration leads
to state space
explosion

= Represent all error

values in program

as an abstract

symbol

" Track propagation of
errors symbolically

= Abstraction may lead
to false-positives

35

SymPLFIED: Propagation Example

ori S2 SO #1
s [
mov 53' 51 Exit loop
ori $4 SO #1
loop: setgt $553.84 |

% err

($3 > $4) = false

Reenter loop and continue

exit: prints "Factorial ="
print $2 —

mmdl true => {N! (N!1/2) ,(N1/3l).....1}

36

SYymPLFIED: Detection Example

ori $2 SO #1

read $1

mov S3, S1

ori $4 S0 #1
loop: setgt S5 $3 $4

beqg S5 0 exit
check (53 >=1
mov S6, 52
mult $2
check (52 <=
subi $3
beqg SO #0 loop
exit: prints "Factorial ="
print $2
halt

err

2 (33 > 84) == false
Exit loop

> (83> 8%4)==true
(Re)-Enter loop

(82 <=$6 * $1) == true,
if (1 <= 83 <= §1)

(82 <=$6 * §1) == false,

if (1<=81 <$3)

SYMPLFIED : Design

Machine Model
(Memory, Registers, Instructions)

Error Model Detector Model

(Register errors, memory Ma“d.e. (Specification and execution
errors, control-flow errors) (Rewrltln of error detectors)

Verification technique
(Model-Checking)

Modular framework allows decoupling of detection mechanism and error
class from the machine model and verification technique

SYymPLFIED: Machine Model

eq {C, <addirsrdv, PC(pc) regs(R) S> }

l \
Machine

{ C, <fetch(C, next(pc)), State
PC(next(pc)) regs(R [rd <- (R[rs] +v) 1) S >}

eq next(pc) = (pc + 1) if not terminal(pc)
eq fetch([L|I]C, L) =1
eq fetch(NoCode, L) = throw instException

SymPLFIED: Error Model

* Data Errors
— rl (Err == Int) => False
— rl (Err == Int) => True

 Address Errors
— rl M[Err] => anyAddr(M)
— rl M[Err] => addrException

* Control Errors
— rl fetch(C, err) => anylLabel(C)
— rl fetch(C, err) => instException

SYymPLFIED: Detector Model

Specified as quintuple:
Det(Id, pc, left expr, right expr)
Checks when program counter==pc if,
value(left expr) == value(right expr)

Detector Example
check(4, 10, !(S4)+ *(#3), @(#5))
Checks if (R[4] + M[3] == 5) when (pc==10)
If not, throw checkException(4)

SYymPLFIED: Model Checking

Exhaustive search feature (bounded model checking):

search AllRegisterErrors (start(program, first, input) =>!
(S:State) such that (getOutput(S) contains 2)
and (getException(S) == noException) .

® Timeout (no. of instructions) must be specified
= Obtained by profiling program with inputs

" Input(s)/Output(s) must be specified for execution
= Comparison with golden output for determining failure

42

SYmPLFIED: Implementation

* Written using a rewriting logic tool - Maude
— Modular and extensible framework - code reuse
— Supports direct execution of programs + libraries
— Wide spectrum of formal techniques can be used

* Architecture: Consists of three main parts

— Front-end: Models processor-specific details and interprets
assembly language program

— Backend: Performs symbolic/concrete evaluation of
program under a given fault model

— Interface primitives: Link front-end to back-end through a
generic interface for easy extensibility

SYmPLFIED: Implementation contd..

SS assembly to DLX to Maude
Maude translator translator

SS instruction set DLX instruction set
Frontend (Maude) Frontend (Maude)

Interface Primitives (Maude)

Symbolic
Execution
Backend (Maude)

Constraint Solving
Backend (Maude)

Concrete evaluation
Backend (Maude)

SYMPLFIED: Output

e States that lead to the error with info about
— Program Counter, Registers, Memory state
— History of branches taken in program
— Fault-injection and activation logs
— State of input/output streams, exceptions

— Constraints on register/memory values

* Correlate with the code to trace how the error
happened and improve detection mechanisms

SYmPLFIED: Case Study

® Tcas: Application Characteristics
" FAA mandated Aircraft collision avoidance system

" Rigorously verified protocol and implementation
" About 150 lines of C code = 1000 lines of assembly

Inputs: Positional parameters
of other aircraft (and self)

Outputs:
0 — Unresolved
1 — Ascend
2 - Descend

SYymPLFIED: Results

" Found one potentially catastrophic output
considering all possible register errors

Output of 2 (descend) instead of 1 (ascend)
Many cases where the output is unresolved (0)

= Highly-parallelizable code of SymPLFIED
" Took about 4 minutes on a 150 node cluster
* Total of 600 minutes (10 hours) of machine time

® Not exposed by random fault-injection
® Used SimpleScalar simulator for experiments
® Ran for more than 40 hours on single machine

SYMPLFIED: Tcas Error

int alt_sep_ test()

(1) Assembly-language level reasoning needed to expose error

(2) Random injection needs to hit both type and location of fault

need_upward_RA = Non_Crossing_Biased_Climb() && Own_Below_Threat();

if (need_upward_RA && need_downward_RA)

It = UNRESOLVED; : i i
alt_sep ’ Non_Crossing_Biased_Climb:

else if (need_upward_RA) Return address in register $31

corrupted by transient error

alt_sep = UPWARD_RA;

else if (need_downward_RA)

alt_sep = DOWNWARD_RA;

48

SYMPLFIED: Summary

* Formal framework to evaluate the effects of
runtime errors on programs with detectors

— Analyze programs directly in assembly language

— Comprehensive enumeration of failure-causing
errors

* Use of symbolic execution + model-checking
— Abstraction techniques to track error propagation

* Tested on aircraft collision avoidance app.
— Found catastrophic error in main controller code
— Not found using random fault-injection experiment

Learning Objectives

Define fault-injection and explain its uses
Design a fault-injection experiment for
measuring reliability

Apply software and hardware techniques for
fault injection

Apply formal techniques for the assessment of
fault tolerance

