Modeling using SANSs

EECE 513: Design of Fault-tolerant
Digital Systems

(based on Bill Sander’s slides at UIUC
and Saurabh Bagchi’s slides at Purdue)

Learning Objectives

Build reliability models of systems with discrete
time Markov models and solve them

Build reliability models of systems with
continuous time Markov models

Model systems using Stochastic Petri nets

Model systems using Stochastic Activity nets

Reliability Evaluation Methods

Measurement-based

--
L 5d "
¢¢¢¢¢

Quantitative evaluation) i }
Discrete-event simulation

Il

Model-based Hybrid

1T

Analytic Methods

Source: Kishore S. Trivedi,
2010 Close-form
: solution

Numerical solution tool

*
0. "
.....
--

Types of Models

Models
Combinatorial State-based
Reliability o | |
block Reliability Fault- Markov Stochastic Stochastic
diagram Graphs trees Models Petri Activity

Nets Networks

State-Space Models

e States can keep track of:
— Number of functioning resources of each type
— States of recovery for each failed resource
— Number of tasks of each type waiting at each resource
— Allocation of resources to tasks

e A transition:
— Can occur from any state to any other state

— Can represent a simple or a compound event

Why State-based Models ?

» States can keep track of history
— System’s dependence on time is explicit
— May real systems need this

* Do not need to limit to independent faults

* Can be solved using analytical methods (if
exponential) or discrete event simulation

Markov Chains - 1

Markov process: Probability distribution for

future state only depends on the present
state, not on how the process arrived at the

present state
Markov chain: State space is discrete
Discrete time Markov chain: Time is discrete

Markov Chains - 2

Let X, X,, .., X, :0bserved state at discrete times t,
t,..,t

X, =] = system state at time step nis .

P(Xn = inl Xo=lop X;=1y ey Xy = in-l)
=P(X =i | X _,=i_) (Markov Property)

py(m,n) =P(X, =k | X, =j), 0 =m =<n (conditional
pmf)
pi(n) =P(X,=j) (unconditional pmf)

Homogeneous Markov Chain

Homogeneous Markov chain: p;(m,n) only depends on

n-m

n-step transition probability: p,(n) = P(X,,,, =k | X,,=j)
— 1-step transition probability: p; = py(1) = P(X, = k[X, ; =j)
Initial probability row vector: p(0) = [p,(0),p,(0), ...,p,
(0), ...]

Transition probability matrix:

| Poo Po1 Po2 - -
P = [p;ij] = | pio p11 P12 - -

Markov Chain Example

System is in state O if it is operational, state 1 if it
is undergoing repair. Transitions occur only at
the end of a day. It's a homogeneous DTMC.

1. Prob of failing=a
2. Prob of repair=>b

l1-a a

b 1-b

P =

}Osmbsl

a
l-a 1-b

10

Computation of n-step Transition
Probabilities

For a DTMC, find p;(n)=PX,,, =jlX, =10

Events: State reaches k (from i) & reachesj (from k) are
independent due to the Markov property

Invoking the theorem of total probability:
py(m+n)= % p,(m)p,(n)
i.e., the Markov chain has to be somewhere at m + n
Let P(n) : n-step prob. transition matrix (i,j)th entry is
p;{n). Making m=1, n=n-1 in the above equation:
P(n) = PP(n-1) = P"
Pj("') =P(Xn=j)= Z P(Xo =1i)P(Xn = j|Xo=1) = Zl'i(o)l)zj(“)

l

11

Computation of n-step Transition
Probabilities

* The pmf of the random variable X, is
pj(n) = P(Xn =j) = ZP(YO =1)P(Xn = j|Xg =1) = Zp (0)pi;(n)
p(n) = [1)0(11) p1(n),..., P; (n),...]

* j, in general can assume countable values, 0,1,2,
.. Defining,

— pj(n) for j=0,1,2,..,k,... can be written in the vector
formas, [pyp; p; - P; --1(N) =

F])oo(l!) I'Ol(”) "'1’0_/(”) 1
pio(n) p11(n) ...p1;(n) ...
poo(n) por(n) ...po;(n) ...
Po P1 P2 ... Pj ---](0) ° t -

p(0) pio(n) pi1(n) ...pjj(n) ...

12

Two state Markov chain example

For a two state DTMC, say the transition prob. matrix is

P = L—a P ,0<a,b<1, |1-a—-b<1
b 1—-0b - -

Then, the n-step transition probability matrix P(n) = P" is

- b+a(l—a—b)" a—a(l—a—b)" 7
- a—+0b a—+0b
P(’l),) o b—b(l—a—b)" a+b(l—a—>b)"

i a—+b a—+b i}

Exercise

Consider a communication network consisting of a
sequence of binary communication channels,

with a=1/4, b=1/2. Here X, denotes the bit
leaving the nth stage and X_ represents the bit
entering the system.

1. If a bit enters as 1, what is the probability of
being correctly transmitted over (a) two stages
(b) three stages?

2. Assuming initial probabilities P(X,=0) =1/3 and P
(X,=1) = 2/3, what is p(n) ?

3. What happens as n goes to infinity ?

14

Steady state probability
distribution: Theorems

* For any irreducible, aperiodic Markov chain,
the limiting state probabilities p(n) as n->inf,,
— exist, and
— are independent of the initial prob. vector

 The limiting probability vector v is called the
steady state probability vector:

v=VvP

15

Learning Objectives

Build reliability models of systems with discrete
time Markov models and solve them

Build reliability models of systems with
continuous time Markov models

Model systems using Stochastic Petri nets

Model systems using Stochastic Activity nets

16

CTMCs

* An important limitation of DTMCs is that events
can occur only at discrete times
— Cannot model continuous events such as failures
— Need to artificially subdivide time into discrete units

e CTMCS: Markov models in which events can
occur continuously in time (at any instance)

— But we assume that the transition probabilities are
exponentially distributed for mathematical tractability

17

CTMC: Example

A

* Edge weights do not represent probabilities
* No self-loops in any of the states
* Sum of outflows not equal to 1

18

CTMC: Transfer matrix

-
'«“:.: — - é Qx..
- . \

Z Q-4 = U VX

—(D ;41 91.5) Q1,2

Q2.1 — ,_: 0 Q2.5)
Q= . .
\ Un,; Ini

For the simple CTMC considered earlier,

o (_M-x uk)

&

19

CTMC: Exercise

A computerisin one of two states, working or
idle. When it is idle, jobs arrive at the rate a
and they’re completed at the rate B. When the
computer is working, it fails with rate A,,,.
When it is is idle, it fails with rate A.. Also, the
computer is repaired with rate p.

* Draw the CTMC corresponding to the
computer and specify its rate matrix.

20

Transfer Matrix: Interpretation

* |[n a CTMC, there is no notion of “one step”

* So one way to think of the matrix Q is as a set
of competing alarm clocks and derive the
equivalent DTMC'’s transition matrix (next)

* This deviates from the standard view of CTMC
as differential equations, but is more intuitive.

21

Converting CTMCs to DTMCs - 1

* Assume that each transition is an alarm clock
that competes with other transitions’ clocks
— If the alarm clock fires, the transition is triggered
— Each clock fires at random, exp. distributed times

e At each state ‘I, the clocks associated with the
transitions to the next state ‘j’ get activated.
The first to fire is the successful transition.

22

Converting CTMCs to DTMCs - 2

* Because times are exponentially distributed,
— No two timers go off at the same time P(T. =t) =0,

— Minimum of exponentially distributed r.vs is an
exponentially distributed r.v with rate A . =% A

PT,<t)=1~e™ t>0,
Qii=)Y Qij,

Prob. that the ith random variable is the min. one is

where,

Q: ; Q.

P(N, —
Lk.k £ (b)‘ k

for jJ#£1

23

Converting CTMCs to DTMCs - 3

* Based on the previous results, we can convert
the CTMC to a DTMC whose one-step
transition matrix P is specified as follows:

Qi Qi

P;; = P(N; = 3} S :
) 2k ks Qik

for j#£1¢,

Based on the above equation, P, ;=7

This process can be used only for steady state.

24

Converting DTMC to CTMC

Qij=wFP; for j#i and Q;; > Qij=w forall 1.
SEAL

* The previous formulation can also help us go
the other way. To get a DTMC from a CTMC.

* However, the conversion runs into trouble if
you have a self loop in the DTMC. You can get
rid of the self loop by adjusting the other
probabilities in the DTMC accordingly.

.. p
P = P. forall ¢ and 7. o= (1l - P .

25

Learning Objectives

Build reliability models of systems with
discrete time Markov models and solve them

Build reliability models of systems with
continuous time Markov models

Model systems using Stochastic Petri nets

Model systems using Stochastic Activity nets

26

Stochastic Perti Nets

* Main disadvantage of Markov chains

— Number of states grows exponentially with
number of paths in the system

— Unnecessarily repetitive because of global chains

* Petri-Nets: Higher-level formalism for
representing processes’ behaviors

— Represent local state rather than global state
— Can be converted to Markov chains automatically

27

SPNs Versus Markov Models - 1

Consider a system with three components, each of which can fail.
The system needs at least 2 components in order to work. The
Markov chain representation would need to consider all possible
combinations of up/down components and assign a state for each.

AR

No. of states with n components =n + 1

28

SPNs Versus Markov Models - 2

The equivalent Petri-Net Formulation for the above system
will be as follows. Note that there are only 2 states in the
system (1.€., places), and the components are represented as
tokens. This 1s so for any number of components.

A Repair

Down

S
®e
®

A Fail

29

Stochastic Petri Nets

One of the simplest high-level modeling formalisms is called stochastic Petri
nets. A stochastic Petri net is composed of the following components:

* Places: which contain tokens, and are like variables

)

* tokens: which are the “value” or “state” of a place

)

e transitions: U which change the number of tokens in places

* input arcs: C ‘ \ which connect places to transitions
e output arcs: M which connect transitions to places

30

Firing Rules for SPNs

A stochastic Petri net (SPN) executes according to the
following rules:

* Atransition is said to be enabled if for each place connected by input
arcs, the number of tokens in the place is = the number of input arcs
connecting the place and the transition.

Example: |
G

Transition t1 is enabled.

31

Firing Rules, cont.

* Atransition may fire if it is enabled. (More about this later.)

* |f a transition fires, for each input arc, a token is removed from the
corresponding place, and for each output arc, a token is added to the
corresponding place.

Example:

t1 fires

32

Specification of Stochastic Behavior of
an SPN

A stochastic Petri net is made from a Petri net by
— Assigning an exponentially distributed time to all transitions.
— Time represents the “delay” between enabling and firing of a transition.
— Transitions “execute” in parallel with independent delay distributions.

Since the minimum of multiple independent exponentials is itself
exponential, time between transition firings is exponential.

If a transition t becomes enabled, and before t fires, some other transition
fires and changes the state of the SPN such that t is no longer enabled,
then t aborts, that is, t will not fire.

Since the exponential distribution is memoryless, one can say that
transitions that remain enabled continue or restart, as is convenient,
without changing the behavior of the network.

33

SPN Example: Readers/Writers
Problem

* There are at most N requests in the system at a time.
Read requests arrive at rate A, and write requests at
rate A,,,. Any number of readers may read from a file
at a time, but only one writer may write at a time. The

writer and the readers may not access the file
simultaneously.

* Locks are obtained with rate A, (for both read and write
locks); reads and writes are performed at rates A, and
A, respectively. Locks are released at rate A ;.

M = CF] (N arcs)

34

SPN Representation of Reader/Writers

Problem

}\r a }\‘L 7\’rel

oo
4 e

N
M
[—O—1~0—1—0—

In the example, the top portion represents the readers
while the bottom portion represents the writers. Each
reader 1s represented by a single token.

35

Notes on SPNSs

* SPNs can be converted into Markov chains
automatically provided they use exponential
distribution for the transition probabilities.

* We skip the algorithm, but it’s fairly straightforward.

 However, SPNs are limited in their expressive power:
may only perform +, -, >, and test-for-zero operations.
This may not be sufficient.

— What if we wanted to express the condition that a writer
may write in conjunction with certain readers but not
others (say, due to conflicts) ?

— Usually restricted to exponential arrival rates

36

Learning Objectives

Build reliability models of systems with
discrete time Markov models and solve them

Build reliability models of systems with
continuous time Markov models

Model systems using Stochastic Petri nets

Model systems using Stochastic Activity nets

37

Stochastic Activity Networks

The need for more expressive modeling languages has led to several
extensions to stochastic Petri nets. One extension that we will examine is
called stochastic activity networks. Because there are a number of subtle
distinctions relative to SPNs, stochastic activity networks use different words
to describe ideas similar to those of SPNs.

Stochastic activity networks have the following properties:

* A general way to specify that an activity (transition) is enabled

* A general way to specify a completion (firing) rule

* A way to represent zero-timed events

* A way to represent probabilistic choices upon activity completion
* State-dependent parameter values

* General delay distributions on activities

38

SAN Symbols

Stochastic activity networks (hereafter SANs) have
four new symbols in addition to those of SPNs:

—Input gate:to define complex enabling predicates

<

— Output gate: to define complex completion functions

>

—Cases: (small circles on activities) to specify probabilistic
choices

k

—Instantaneous activities: to specify zero-timed events

39

SAN Enabling Rules

* An input gate has two components:

1. enabling_function (state) — boolean; also called the
enabling predicate and is written in C-like language

2. input_function(state) — state; rule for changing the state
of the model. Also written in C-like language

e An activity is enabled if for every connected input gate, the
enabling predicate is true, and for each input arc, the
number of tokens in the connected place = number of arcs.

 We use the notation MARK(P) to denote the number of
tokens in place P

40

Example SAN Enabling Rule

1G]
Pl

o7 al

P3
|IG1 Predicate:
1f ((MARK(P1)>0 && MARK (P2)==0) ||
(MARK (P1)==0 && MARK (P2)>0))
return 1;

else return 0;

Activity al is enabled if IG1 predicate is true (1) and MARK(P3) > 0.
(Note that “1” is used to denote true.)

41

Cases

Cases represent a probabilistic choice of an action to take when an activity
completes.

P1 1-o

P3

When activity a completes, a token is removed from place P1, and with
probability o, a token is put into place P2, and with probability 1 - o, a token
is put into place P3.

Note: cases are numbered, starting with 1, from top to bottom.

42

Output Gates

When an activity completes, an output gate
allows for a more general change in the state of
the system. This output gate function is usually

expressed using pseudo-C code.
oG

>

OG Function
MARK(P) = 0;

43

Instantaneous Activities

Another important feature of SANs is the instantaneous activity. An

instantaneous activity is like a normal activity except that it completes in zero
time after it becomes enabled. Instantaneous activities can be used with
input gates, output gates, and cases.

-

Instantaneous activities are useful when modeling events that have an effect
on the state of the system, but happen in negligible time, with respect to
other activities in the system, and the performance/dependability measures.

44

SAN Terms

1. activation - time at which an activity begins
2. completion - time at which activity completes

3. abort - time, after activation but before
completion, when activity is no longer enabled

4. active - the time after an activity has been
activated but before it completes or aborts.

45

Completion Rules

When an activity completes, the following events take place (in the
order listed), possibly changing the marking of the network:

1. If the activity has cases, a case is (probabilistically) chosen.

2. The functions of all the connected input gates are executed (in an
unspecified order).

3. Tokens are removed from places connected by input arcs.

4. The functions of all the output gates connected to the chosen case are
executed (in an unspecified order).

5. Tokens are added to places connected by output arcs connected to the
chosen case.

Ordering is important, since effect of actions can be marking-
dependent.

46

Marking Dependent Behavior

Virtually every parameter may be any function of the state of the model.
Examples of these are

* rates of exponential activities

* parameters of other activity distributions

* case probabilities

An example of this usefulness is a model of three redundant computers
where the probability that a single computer crashing crashes the whole
system (due to loss of coverage) increases after a failure.
0G1
a
1-c case 1 0.1 +0.02* MARK(P)
case 2 0.9-0.02 * MARK(P)

47

Fault-Tolerant Computer Failure Model
Example

A fault-tolerant computer system is made up of two
redundant computers. Each computer is composed of
three redundant CPU boards. A computer is operational
if at least 1 CPU board is operational, and the system is
operational if at least 1 computer is operational.

CPU boards fail at a rate of 1/10° hours, and there is a
0.5% chance that a board failure will cause a computer
failure, and a 0.8% chance that a board will fail in a way
that causes a catastrophic system failure.

438

SAN for Computer Failure Model

Enabledl

Enabled2

O
O
CPUfaill

@
CPUfail2

I Number of
CPUboardsl falled boaI'dS

Uncovere dl1 l ln Compl

Catastrophicl
Q Number of

NumComp .
D failed comps
Covere d2

S Number of
Catastrophic2 CPUboards2 failed boards
in comp?2

49

Activity Case Probabilities and Input
Gate Definition

Activity Case Probability
CPUf aill / 0.987
2 0.005
3 0.008
Gate Def inition

Enabled] |Predicate
MARK(CPUboardl > 0) && M ARKNumComp) > 0

Function
MARK(CPUboardl)™ —;

Output Gate Definitions

Gate Def inition
Covered 1 Function
if (MARK(CPUboardsl) == ()
MARKNumComp)--;

Uncoveredl Function
MARK (CPUboardsl) = 0

MARK NumComp)--;

Catastrophicl | Function
MARK (CPUboardsl) = 0,

MARKNumComp) = 0,

Note that the output gate does not encode the
probabilities

Reward Models

* Way of measuring performance or
dependability features of a model

 Examples
— Expected time until service
— System availability
— Number of misrouted packets in a time interval
— Processor utilization
— Length of downtime

52

Reward Models : Types

Rate Rewards * Impulse Rewards
— Earned when the model — Earned when certain
is in a certain state or set activities in the model
of states for a period of complete
time — Example: Time until the
— Example: Amount of occurrence of the first
time a system is in the failure (activity) is a
“up” state(s) is a measure of its MTTF
measure of its
availability

Total Reward = Rate Reward + Impulse Reward

53

Reward Models: Computer System

Example
Rate Reward Impulse Reward
* Reliability R(t) Number of board failures
Amount of time until both How many board failures can
systems have failed occur in a certain time ?
MARK(NumComp) >=0 activity: CPUFaill, value =1

activity: CPUFail2, value =1

54

Rate Distributions

* Can specify activity time distributions
— Distribution parameters > marking dependent

* Exponential and Deterministic solutions

— Analytical solution possible

e Other distributions: Normal, Binomial etc.
— No analytical solution —discrete event simulation

55

Mobius: State Space Generation

&l HighAvailComp: Gaen
Fle Ekdr Hzb

155G Info :| 555 Oupuk

ctucy Nome: [avalabity ;
Expermert List Experiment 1 [Expetiment Activanor]

Run ame: | Testian

Buld Tyse: kommm v] ~ Print out absorbing
Traos Level:

Hash Yahie: :0.5 / StatCS. USCflll tO

[] Flag Absorting States detect problems

] Flece CammerksinOutpit (gt Comments | when attempting a
steady-state

solution.

Print out states
and reward
variables

[Start Stake Space Gererahion]

‘ Mobius Flat State Space Generztor 1.6.0-D
Mobius

' \lare ' re ' 1
" Gen Version Numbe

Place comments, as
specified by edit
comments, in file.

56

State space generated by Mobius

State No. | CPUboards] | CPUboards2 | NumComp | (Next State, Rate)

1 3 3 2 (2,.p1A).(3,p21).(4,P31),(5,p11).(6,p22,),(7,p3A)

2 2 3 2 (R8,p1A).(3,p22),(4,p31).(9.p1A).(10,p24),(11,p3R)
3 0 3 1 (12,p1A),(13,(p2+p3) A)

< 0 3 0

5 3 2 2 (9,p1A).(12,p22),(14,p30),(15,p1A),(6,p2A),(7,p3A)
6 3 0 1 (10,p1A),(13,(p2+p3) A)

7 3 0 0

8 1 3 2 (3.(p1+p2) A).(4,p31).(16,p14).(17,p2).(18,p32)
9 2 2 2 (16,p1A),(12,p21),(14,p3),(19,p1A).,(10,p24),(11,p3A)
10 2 0 1 (17,p1A),(13,(p2+p3) A)

11 2 0 0

12 0 2 1 (20,p12),(13,(p2+p3) A)

13 0 0 0

14 0 2 0

15 3 1 2 (19,p1A),(20,p24),(21,p31),(6,(p1 +p2) A).(7.p3)
16 1 2 2 (12,(p1+p2) A),(14,p31),(22,p12),(17,p2A),(18,p31)
17 1 0 1 (13, A)

18 1 0 0

19 2 1 2 (22,p1A),(20,p21),(21,p3A),(10,(p1+p2A),(11,p34)
20 0 1 1 (13, 2)

21 0 1 0

22 1 1 2 (20,(p1+p2) 2),(21,p30).(17.(p1+p2) A),(18,p33)

57

Example: Generated Markov Model
Y
<\ />

58

Model Combination

Processor

A composed model is a
way to combine two or
more SANs together so
that they can share
places and rewards

e Two kinds of Joins
— Join
— Replicate

59

Why combine models ?

* Fault-tolerant systems have redundancy. Rep is
a natural way of adding redundancy to system

* Most systems are too complex to have 1 single
model. So we need a hierarchical structure

e State-space generation for composed models
more efficient (Strong Lumping Theorem)

60

Model Combination: Example

CPUfaill

NumComp

Note: Initial marking of NumComp 1s
still two for two computers

NumComp is a shared place

e

61

Reduced Markov Model due to
Model Combination

62

Tricks to reduce state space

* Lump all failures into the same state if you
don’t care which component failed

* Use replication if you don’t care which
component or which module is in which state

* Use marking dependent rates to model
failures leveraging the fact that minimum of
exponential distributions is exponential

63

Mobius: Analytical Solvers

* Can be done only after state space generation

Analytic Solvers (for reward variables only)

Steady- Instant-of-time Mean, Applicable
Model Class state or or Variance, or Analytic
Transient = Interval-of-time | Distribution Solver
All activities Steady- Instant-of-time” Mean, dss and iss
exponential state Variance, and
Distribution
Transient Instant-of-time Mean, trs and atrs
Variance, and
Distribution
Interval-of-time Mean ars
Exponential and Steady- Instant-of-time” Mean, diss and
Deterministic state Variance, and adiss
activities Distribution

64

Summary

» State-based models for reliability evaluation
— Markov Chains

— Stochastic Petri Nets

— Stochastic Activity Networks

e Stochastic Activity Networks are a powerful
mechanism to specify states and transitions
— can be automatically converted to Markov chains

— High-level formalism avoids gratuitous states

65

