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Learning Objectives

e At the end of this lecture, you will be able to
— Define combinatorial models of reliability
— Evaluate the reliability of series, parallel systems
— Evaluate reliability of non-series, parallel systems

— Evaluate standby redundancy schemes

— Model failures using the exponential distribution
— Evaluate the reliability of TMR and TMR Simplex
— Understand the pitfalls of single voter in TMR



Combinatorial Modeling

System is divided into non-overlapping modules

Each module is assigned either a probability of
working, P, or a probability as function of time, R (t)

The goal is to derive the probability, P_.., or function

R,,s(t) of correct system operation

sys’

Assumptions:
— module failures are independent

— once a module has failed, it is always assumed to yield
incorrect results

— system is considered failed if it does not satisfy minimal
set of functioning modules
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Reliability of series systems

* Reliability R, = Prob that component i works
* Reliability R, = Prob that system works

Assume that components fail independently.
Component i fails with probability p.

R,_Prob that comp. i works =1 - p.
R, = Prob that system works = R,.R,.R;....R, =1qR.



Reliability of parallel systems

* Assume that
components fail
independently

* Probability that
system works =

R, =1 - Probability of all
components failing
=1-P,P,P,..P,
=1- N,"(1-R)



Series-Parallel Effects

e Series system Reliability
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Exercise

* Calculate the reliability of the following system
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Non-Series Parallel System

* Consider the following system: It is neither a
series nor parallel system. So how do we

evaluate its reliability ?

—

— -

<

-



Non-Series Parallel System - 1

Start by picking a module ‘m’ in the system

P(sys works) = P(sys works | m works ) P(m works)
+ P(sys works | m fails) P (m fails)

R,s = P(sys works | m)R, + P(sys works | m’)(1-R)




Non-Series Parallel System - 2

Pick ‘m’ to be module E. Consider the case where E
fails. Then,

P(sys works|E’) =[ 1 - (1 — R,R;)(1 — R)IRCR,

-
— -




Non-Series Parallel System - 3

Now, consider the case where E works. This is
equivalent to shorting the line. However, this
does not make the problem any easier. So do
the same thing again with a different module.



Non-Series Parallel System - 4

Let’s pick module B. When B fails,
P(sys works|Eand B’) =[1-(1—-R,)(1—-R:R.)IR,




Non-Series Parallel System -5

When B works, it is still the same as before:
P(sys works|E and B) =[ 1- (1 —-R,)(1—-R:R.)IR,




Putting it all together - 1

P(sys works | E’) =[ 1 - (1 —R,R;)(1—Rp)]IR:R,

P(sys works | Eand B") =[1-(1—-R,)(1-R:R.)IR,
P(sys works | Eand B) = [1-(1—R,)(1—-R:R.)]IR,

P(sys|E) =[1-(1-R,)(1-RR)IR,[Rg + R;'] =
=[1-(1- RA)(l - RFRC)]RD
P(sys works) = P( sys works | E) R¢
+ P( sys works | E’)(1 —R)




Putting it all together - 2

Rs,s = P(sys works) =
[1-(1-R,Ry)(1—-R.)IRR, (1-R)
+[1-(1-Ry)(1-R(R)IR,(1—-Rp)

* LetR,=R,=R.=R,=R. =R, =R, then
Ryys = R®— 3R5 + R4+ 2R3



Some tips for non-series-parallel

* The above problem would have been much
simpler if I'd picked module A initially

— Try it yourselves, result should be the same

* Choosing the initial module is crucial.
* Heuristics:

— Pick modules that are on as many paths as possible

— Think about whether a single module prevents the
system from becoming a serial/parallel system



Non-series-parallel systems

 Sometimes all you
want is an upper-

e . B bound on reliability

1 — * Consider each path
separately and treat it
as a parallel system

B e (of the paths)

Rsys <= 1 — (1 — R%)(1 - R%)(1 — R3)] * Why is it an upper
<= 2R3+ R4 — R6 -2R7 + R10 bound ?
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Standby Redundancy - 1

| | * Consider a parallel
switch system in which
| another component is
activated if and only if
the current one fails. A
switch detects failure
of the system and
reconfigures the
system around it.




Standby Redundancy - 2

Let each module have a
reliability of R. Assume
that failures are
independent, and that
the detection coverage
of the switch is c.

switch

Rsys = Rm t Rm E_Ci(l - Rm)i



Standby Redundancy - 3

* Consider a system with standby redundancy
where each component has reliability 0.9.
Assume that the coverage of the detection
mechanism is 0.99. How many modules will
you need to achieve a reliability of 0.999 ?



Standby Redundancy : Coverage

* Reliability decreases sharply as
coverage drops and saturates |

c=0.99, c=0.99, c =0.80,
R=0.90 R=0.70 R=0.90

n=2 0.989 0.908 0.972 0.868

n=4 0.999 0.988 0.978 0.918

n =inf 0.999 0.996 0.978 0.921
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Reliability in terms of CDF
Random /'aﬁablex/_,\ . LEt the randOm Va rlable
a X denote the lifetime or

time to failure of a
component.
* Reliability R(t) = Prob
e that component
survives up to time t

F(a)=P(X-a) =P(X>t)=1-F(t)

P(X=za) \\

=1- [ = [ foo



Conditional Reliability

The previous equation assumes that we
started using the component at t = 0 (new).
But sometimes we want to evaluate the
reliability of a component, given that it has
worked until time t (i.e., used components)

R(t| T)=R(T+t)/R(T)

MISSION: Mission 2
TIME: <
time =1

RESULT: UNKNOWN




Conditional Reliability (contd..)

e Assume that a component does not age over
time. In other words, its survival probability over
time (y + t) is independent of its present age t.

R(y + t) = R(y) R(t)

(R(t+y)—R(t))/t=R(t) [Rly)—1]/t

Taking limit as t=>0 and as R(0) = 1, we get
R'(y) = R'(0) R(y)

Solving the differential equation, R(y) = e YR (0

We set R’(0)= -\, thenR(y) =e ™™, y>0



Exponential Distribution

This yields the famous exponential distribution
Fix)= 1-e™ x>0

0 , otherwise

f(x) = Ae ™,x>0

0 , otherwise

A is called the failure-rate in the context of reliability



Exponential Distribution -2
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Exponential Distribution -3

Some properties of exponential distributions:
1. P(X>=t)=e™
2. Pla<=X<=b)=eM.eg-M
3. Mean time to failure (MTTF) =Mean=1/A
4. Memory-less property (we started with this):
P(T>y+t|T>y)=P(T>t)

Example: P (T>40 | T>30)=P (T > 10)

Does NOT mean: P(T>40 | T>30) =P(T > 40)



Why is this useful for Reliability ?

A used componentis as good as new, so no need
to replace components that are working fine

* In calculating MTTF, reliability etc. we do not
need to keep track of history of the system
— Especially useful for Markov models (later)

* Makes it very simple to reason about reliability as
failure rate is a constant (series/parallel systems)



Exponential Failure Rate: Series

* Consider a series system in which each
component has exponentially distributed and

independent lifetimes, with rates A;, A, A5, ..., A,

R, = Prob that system works = R;.R,.R;....R
=(1-F)(1-F)1-F;)...(1-F)

=e M+ 442 )t 2 exponentially distributed
)\sys =()\1-|_)\2-|_)\’;3-|_)\n)



Exponential Failure Rate: Parallel

* Consider a parallel system in which each
component has exponentially distributed and
independent lifetimes with rates A, ..., A

n

Rpb=1-M(1-R)=1-TNF= 1-N(1-e™Y
NOTE: The corresponding failure distribution is
not exponential, but is a function of its age.

When A=A, =..= A, R(t) =1 - (1-e M)



Failures in practice: Bathtub curve
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Other Distributions

Hyper-exponential

Weibull

Log-normal

Normal



Hypo-exponential distribution

* Sometimes you need to add two random
variables, X and Y, each of which is
exponentially distributed (i.e., Z=X +Y)

— Z follows a distribution called Hypo-exponential

f(t)=AA/ (A —A)[ eht- et t]

F(t)=1-[A,/(A,=A)er-A/(A, = A,) el
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M-out-of-N system

Consider a system with
‘N’ components such
that at least ‘M’
should work for the

system to work.

Component lifetimes
are |.ILE.D

Rsys = (n_)Rj (1-R)"

J

J



TMR system

e Special case of NMR
where N=3, M=2

Rryr = 3R2(1—R) + R3
= 3R2-2R3

Let R(t) = e™, then

RTMR — 3e-2)\t _ ze-3)\t

R = eM

simplex
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TMR Versus Simplex

 TMR offers substantially better reliability than
Simplex for short mission times (T < T,)

— Used in systems such as airplanes where mission
times are typically short ( < component lifetime)

— Not suitable for long missions such as space systems

e After the first failure, the TMR is equivalent to a
system of 2 components in series

— Failure rate is double that of a single system
— Second component does not provide any benefit



TMR-Simplex System

 Can we combine the advantages of TMR and
Simplex in the same system ?

— After one system fails in a TMR, we switch to a
simplex configuration by discarding a component.
So this means we discard a good component

R(t)=1-[1- 3/(3—-1)eM+1/(3—-1)e3M]
=(3/2)eM—(1/2)e3M  (hypo-exponential)
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TMR versus TMR-Simplex

* TMR Simplex achieves much higher MTTF than
TMR — can be used in long-term missions

 However, the reliability benefits provided by
TMR are not available after the first failure

e Also, false-alarms possible if wrong detection
— May degrade reliability considerably
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TMR — Voter Reliability

Voter is a single point of failure in TMR systems
(equivalent to a series system with Voter)

R:vir = Ry[Ry? + 3R,2(1 = Ry,) ]

Reliability is only as good as reliability of Voter

1. Voter can fail silently and discard correct
outcomes -> switch to Simplex in worst case

2. Voter can prevent faulty outcomes from being
suppressed — much more serious kind of error



TMR with redundant voters
. - * Usea TMR

\l configuration for the
Voter as well.
VOterz Ry= R® +3R,*(1-R)

However, there needs
\ N )

voter3 to be a single voter
somewhere !!!




TMR Voting: Practical issues

e Voter also introduces a performance delay due
to variations in clock-speeds/network delays

 What is the right granularity of voting ?
— instruction-level, module-level, syscall boundaries

* How to handle non-determinism in voting ?
— Ensuring determinism among replicas is hard
— Discard non-deterministic state during voting
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