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Large Computing Systems 
Machine Processor 

Cores 
PetaFLOPS Year 

K Computer 705,000 10.5 2011 

Jaguar 224,000 1.8 2009 

Tianhe-1A 186,000 2.6 2010 

Hopper 153,000 1.1 2011 

Cielo 142,000 1.1 2011 

Tera100 138,000 1.0 2010 

RoadRunner 122,000 1.0 2008 

•  Dominant constraints on size 
–  power consumption, reliability and usability 



Node Failure Challenges 
•  Domain decomposition  

–  spreads vital data across all nodes 
–  each spatial cell exists in one memory 

»  except possible ghost or halo cells 
•  Single node failure 

–  causes blockage of the overall simulation 
–  data is lost and must be recovered 

•  “Bathtub” failure model operating regimes 
–  infant mortality 
–  normal mode 
–  late failure mode 

•  Simple checkpointing helps; the optimum interval is roughly 

where δ is time to complete a checkpoint 
M is the time before failure 
R is the restart time due to lost work 
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Machine Core Count Reliability 

ASCI Q 8,192 MTBI 6.5 hr. 114 unplanned outages/month.  
HW outage sources: storage, CPU, memory * 

ASCI White 8,192 MTBF 5 hr (’01) and 40 hr (’03) 
HW outage sources: storage, CPU, 3rd party 
hardware ** 

NERSC 
Seaborg 

6,656  MTBI 14 days. MTTR 3.3 hr 
Availability 98.74%. SW is main outage source. *** 

PSC 
Lemieux 

3,016  MTBI 9.7 hr 
Availability 98.33% **** 

Google ~15,000 20 reboots/day. 2-3% machines replaced/year. 
HW outage sources: storage, memory ***** 

Large Systems Reliability 

*J. Morrison (LANL): “The ASCI Q System at Los Alamos,” SOS7, 2003 
** M. Seager (LLNL): “Operational machines: ASCI White,” SOS7, 2003 
*** http://hpcf.nersc.gov/computers/stats/AvailStats 
**** M. Levine (PSC): “NSF’s terascale computing system,” SOS7, 2003 
***** J. Hennessy et al, “Computer Architecture: A Quantitative Approach”, 3rd edition, 2002 



Large System Reliability 
•  Facing the issues 

–  component MTBF 
–  system size 
–  usable capability 

•  A few assumptions 
–  assume independent component failures 

»  an optimistic and not realistic assumption 
–  N is the number of processors 
–  r is probability a component operates for 1 hour 
–  R is probability the system operates for 1 hour 

•  Then              or               for large N 
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Component Reliability 
•  Two basic types 

–  hard (permanent) errors 
–  soft (recoverable) errors 

•  Hard errors 
–  permanent physical defects 
–  memory: 160-1000 years MTBF for 32-64 Mb DRAM chips 
–  disk: 50-100 years MTBF (?) 
–  node: 3-5 years (warranty period) 

•  Soft errors 
–  transient faults in semiconductor devices 

»  alpha particles, cosmic rays, overheat, poor power supplies, .. 
–  ECC memory isn’t 100% secure 

»  80-95% protection rate 
–  much more likely than hard errors 

»  10 days MTBF for 1GB RAM 
–  continues to worsen as chip geometries shrink 



Memory Soft Error Rates 
Memory Type MTBF in days (1 GB) 

Commercial CMOS memory 0.8  
4M SRAM > 1.2 
1Gb memory (NightHawk) 2.3 
SRAM and DRAM 2.6-5.2 
8.2 Gb SRAM (Cray YMP-8) 4 
SRAM 5.2 
256 MB 7.4 
160 Gb DRAM (FermiLab) 7.4 
32 Gb DRAM (Cray YMP-8) 8.7 
MoSys 1T-SRAM (no ECC) 10.4 
Micron estimates, 256 MB 43-86 

Source: Tazzaron Semiconductor, “Soft Errors in Electronic Memory – A White Paper” 



Communication Errors 
•  Soft errors occur on networks as well 

–  routers, switches, NICs, links ... 
•  Link-level checksum = Reliable transmission? 

–  Stone and Patridge’s study* shows 
»  probability of Ethernet’s 32-bit CRC not catching errors 

  1/1,100 to 1/32,000 
–  theoretically, it should be 1/(4 billion) 

•  To make things worse 
–  performance-oriented computing favors OS-bypass protocols 

»  relative to TCP 
–  message integrity solely relies on link-level checksum 

* J. Stone and C. Partridge “When the CRC and TCP checksum disagree” in ACM SIGCOMM 2000 



Terminology 
•  Error/failure 

–  system behavior 
deviates from 
specification 

–  omission 
»  occasionally no 

response… 
–  response 

»  incorrect 
–  performance 

»  response is correct 
but not timely 

–  crash/hang 

•  Fault 
–  single event upset 

»  bit flips 

–  single event burnout 
»  power surge 

–  Bohrbug 
»  determinism 

–  Heisenbug 
»  race condition 
»  rare input 

–  ageing 
»  resource exhaustion 
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Experiments 
•  Goal: study the impact of bit-flip faults on MPI codes 
•  Rationale 

–  it is easier to detect hard errors and assess their damage 
–  what about transient  faults?  
–  crash? hang? incorrect output? … 

•  Approach: fault injection 
  Software-based 

–  inexpensive and portable 
–  targets a wide range of 

components 
–  OS, libraries, applications ... 
–  address bus, ALU, memory ... 

•  Hardware-based 
–  expensive 
–  heavy ion bombarding or lasers 
–  pin-level probes and sockets 
–  Alpha particles, bit-flips, power 

surge, 0/1 stuck-at ... 



Register Fault Injection 
•  Processor (x86) 

–  User-space injection 
–  Regular registers and x87 FPU registers 
–  No injection to special purpose registers (need root privilege) 

»  System control registers, debug and performance registers 
»  Virtual memory management registers, MMX/SSE.. 

–  No injection to L2/L3 caches, TLB 



Memory Fault Injection 
•  Memory 

–  Focus on application memory 
–  Injection addresses have uniform 
   distribution. 
–  Skip library memory 

» MPI and shared libraries 

–  Text, Data, BSS 
–  Heap and stack 

Linux Process Memory Model 



Message Fault Injection 
•  Simulate faults that link-

level checksums miss 
–  Use MPICH for 

communication 
–  Inject at the level closest to 

operating system 
»  but avoid perturbing the 

operating system (for 
testability) 

–  Can affect all kinds of 
messages 

»  Control, point-to-point, 
collective operations… 



Memory Fault Injector 
•  ptrace UNIX system call 

–  Attach to and halt a host process 
–  Peek/poke register and memory contents (like gdb) 

•  Static objects (Text, Data, BSS) 
–  Used nm and objdump utilities to find the range of injection 
–  Skipped all MPI objects 

•  Dynamic objects (Heap and stack) 
–  Created customized malloc/free 

»  separates application objects from MPI objects 
–  Examined return addresses in stack frames 

»  determine the range of stack injection 



Message Fault Injector 
•  MPICH 

–  Developed by Argonne National Laboratory 
–  Highly portable MPI implementation 
–  Adopted by many hardware vendors 

•  Fault injector 
–  Modified MPICH library 
–  Uses “ch_p4” channel (TCP/IP) 
–  Faults injected in the payload 

»  immediately after receipt from a socket 
–  Both MPICH and user applications are vulnerable to message faults 



Experimental Environment 

•  A meta-cluster formed from two clusters 
– Rhapsody 

» 32 dual 930 MHz Pentium III nodes 
» 1 GB RAM/node 
» 10/100 Gigabit Ethernet 

– Symphony 
» 16 dual 500 MHz Pentium II nodes 
» 512 MB RAM/node 
» Ethernet and Myrinet 



Fault Assessment Code Suite 

•  Cactus Wavetoy 
–  PDE solver for wave functions in physics 
–  Test problem 

»  150x150x150 for 100 steps 
»  196 processes 

•  CAM 
–  Community Atmospheric Model 
–  Test problem 

»  default test dataset for 24 hours of simulated time 
»  64 processes 

•  NAMD 
–  Molecular dynamics code 
–  Test problem 

»  92,000 atoms and 20 steps 
»  96 processes 



Injection  
Location Cactus NAMD CAM 
Memory 1.1 MB 25-30 MB 80 MB 

Text Size 330 KB 2 MB 2 MB 
Data Size 130 KB 110 KB 32 MB 
BSS Size 5 KB 598 KB 38 MB 

Heap Size 450-500 KB 22-27 MB 8 MB 
Message 2.4-4.8 MB 13-33 MB 125-150 MB 

Test Code Suite Characteristics 



Experimental Fault Assessment 

•  Failure modes 
–  Application crash 

»  MPI error detected via MPI error handler 
»  Application detected via assertion checks 
»  Other(e.g., Segmentation fault) 

–  Application hang (no termination) 
–  Application execution completion 

»  correct (fault not manifest) or incorrect output 



Cactus Wavetoy Results 

500-2000 injections for each category 



NAMD Results 

~500 injections for each category 



CAM Results 

~500 injections for each category 



Register Injection Analysis 
•  Registers are the most vulnerable to transient faults 

–  39-63% error rate overall 
–  Results could depend on register management 

»  Live register allocation and size of register file 
»  Optimization increases register use 

•  Error rates for floating point registers are much lower 
–  4-8% error rate 
–  Most injections into control registers do not generate errors 

»  Except the Tag Word register, which turns a number into NaN 
–  Injections into data registers do not yield high error rates 

»  At most 4 out of 8 data registers are in use 
»  A data register is actually 80-bit long, but only 64 bits can be read out. 



Memory Injection Analysis 
•  Error rates for memory injections are very low 

–  3-15% error rate 
–  Spatial locality: Memory is not accessed 
–  Temporal locality: Memory is overwritten before reuse 

•  Working set analysis 
–  To understand memory access behavior 
–  Collected memory load data 

» Using Valgrind, an open-source x86 memory debugging tool 



Working Set Analysis 
•  Definition of working set at time t 

–  Size of accessed memory since t 
–  Non-increasing 

•  Larger working size → Higher chance of 
fault-induced errors 



Memory Access Behavior 



Memory Access Behavior 



Message Injection Analysis 
•  NAMD and CAM are sensitive to message faults 

–  38% and 24% error rates, respectively 

•  NAMD 
–  Built-in message integrity checks are lightweight and effective  
–  46% of errors are detected, only 28% of errors are incorrect output 

•  CAM 
–  only 3% of errors are caught, 71% of errors are incorrect output 

•  Cactus Wavetoy’s error rate is very low 
–  The output we used to verify correctness is in plain text format 
–  Low order decimal digits are not reported 
–  Only perturbation in significant bits will manifest in a short run 
–  After more steps of execution, the error will manifest 



What is an Exascale System? 

•  Embrace failure, complexity, and scale 
–  a mind set change 



Failures and Autonomic Recovery 

•  106 hours for component MTTF 
–  Sounds like a lot until you divide by 105!  

•  It’s time to take RAS seriously 
–  Systems do provide warnings 

»  Soft bit errors – ECC memory recovery 
»  Disk read/write retries, packet loss and retransmission 

–  Status and health provide guidance 
»  Node temperature/fan duty cycles 

•  Software and algorithmic responses 
–  Diagnostic-mediated checkpointing 
–  Algorithm-based fault tolerance  
–  Domain-specific fault tolerance 
–  Loosely synchronous algorithms 
–  Optimal system size for minimum execution time 



Fault Tolerance Support in MPI 
•  MPI is a standard, not an implementation 

–  MPI standard: “After an error is detected, the state of MPI is 
undefined” 

–  Most implementations: Abort whenever there is any error. 
•  What about MPI_Errhandler_set API in MPI 1 ? 

–  Not what you think ! 
–  Only handles semantic errors such as sending messages to a non-

existing MPI process. 
•  What about MPI 2 standard? 

–  Can spawn MPI processes dynamically. 
–  Has listen/accept/connect BSD socket-like APIs. 

•  MPI 3 work-in-progress 
–  Redefines MPI semantics: e.g. Failed MPI processes treated as 

non-existing MPI processes 
–  MPI 3 FT Working Group: http://www.mpi-forum.org 



Conclusions 
•  The most damaging soft bit errors 

–  Register and message contents 
•  Memory errors, albeit less likely 

–  Are still a critical failure mode for large systems 
•  Application internal checks can catch errors 

–  Defensive programming is important at scale 
•  MPI Standard 

–  Supports very minimal error detection and recovery 
–  Fault-tolerant MPI support and extensions are needed 

•  It’s time to take reliability seriously 
–  RAS is critical to continued system scaling 


