
Assessing Fault Sensitivity in
MPI Applications

Charng-Da Lu

Center for Computational
Research

SUNY at Buffalo

Daniel A. Reed

Microsoft Research

Outline
•  Introduction

–  background and motivations
–  reliability challenges of large PC clusters

•  Failure modes
–  memory and communication errors

•  Fault injection experiments
–  methodology and experiments
–  analysis and implications

•  Conclusions
–  large-scale cluster design
–  software strategies for reliability

Large Computing Systems
Machine Processor

Cores
PetaFLOPS Year

K Computer 705,000 10.5 2011

Jaguar 224,000 1.8 2009

Tianhe-1A 186,000 2.6 2010

Hopper 153,000 1.1 2011

Cielo 142,000 1.1 2011

Tera100 138,000 1.0 2010

RoadRunner 122,000 1.0 2008

•  Dominant constraints on size
–  power consumption, reliability and usability

Node Failure Challenges
•  Domain decomposition

–  spreads vital data across all nodes
–  each spatial cell exists in one memory

»  except possible ghost or halo cells
•  Single node failure

–  causes blockage of the overall simulation
–  data is lost and must be recovered

•  “Bathtub” failure model operating regimes
–  infant mortality
–  normal mode
–  late failure mode

•  Simple checkpointing helps; the optimum interval is roughly

where δ is time to complete a checkpoint
M is the time before failure
R is the restart time due to lost work

Elapsed Time

Fa
ilu

re
 R

at
e

Burn
in

Normal
Aging

Late
Failure

Machine Core Count Reliability

ASCI Q 8,192 MTBI 6.5 hr. 114 unplanned outages/month.
HW outage sources: storage, CPU, memory *

ASCI White 8,192 MTBF 5 hr (’01) and 40 hr (’03)
HW outage sources: storage, CPU, 3rd party
hardware **

NERSC
Seaborg

6,656 MTBI 14 days. MTTR 3.3 hr
Availability 98.74%. SW is main outage source. ***

PSC
Lemieux

3,016 MTBI 9.7 hr
Availability 98.33% ****

Google ~15,000 20 reboots/day. 2-3% machines replaced/year.
HW outage sources: storage, memory *****

Large Systems Reliability

*J. Morrison (LANL): “The ASCI Q System at Los Alamos,” SOS7, 2003
** M. Seager (LLNL): “Operational machines: ASCI White,” SOS7, 2003
*** http://hpcf.nersc.gov/computers/stats/AvailStats
**** M. Levine (PSC): “NSF’s terascale computing system,” SOS7, 2003
***** J. Hennessy et al, “Computer Architecture: A Quantitative Approach”, 3rd edition, 2002

Large System Reliability
•  Facing the issues

–  component MTBF
–  system size
–  usable capability

•  A few assumptions
–  assume independent component failures

»  an optimistic and not realistic assumption
–  N is the number of processors
–  r is probability a component operates for 1 hour
–  R is probability the system operates for 1 hour

•  Then or for large N

1 hour reliability

System Size

M
TT

F
(h

ou
rs

)

Component Reliability
•  Two basic types

–  hard (permanent) errors
–  soft (recoverable) errors

•  Hard errors
–  permanent physical defects
–  memory: 160-1000 years MTBF for 32-64 Mb DRAM chips
–  disk: 50-100 years MTBF (?)
–  node: 3-5 years (warranty period)

•  Soft errors
–  transient faults in semiconductor devices

»  alpha particles, cosmic rays, overheat, poor power supplies, ..
–  ECC memory isn’t 100% secure

»  80-95% protection rate
–  much more likely than hard errors

»  10 days MTBF for 1GB RAM
–  continues to worsen as chip geometries shrink

Memory Soft Error Rates
Memory Type MTBF in days (1 GB)

Commercial CMOS memory 0.8
4M SRAM > 1.2
1Gb memory (NightHawk) 2.3
SRAM and DRAM 2.6-5.2
8.2 Gb SRAM (Cray YMP-8) 4
SRAM 5.2
256 MB 7.4
160 Gb DRAM (FermiLab) 7.4
32 Gb DRAM (Cray YMP-8) 8.7
MoSys 1T-SRAM (no ECC) 10.4
Micron estimates, 256 MB 43-86

Source: Tazzaron Semiconductor, “Soft Errors in Electronic Memory – A White Paper”

Communication Errors
•  Soft errors occur on networks as well

–  routers, switches, NICs, links ...
•  Link-level checksum = Reliable transmission?

–  Stone and Patridge’s study* shows
»  probability of Ethernet’s 32-bit CRC not catching errors

  1/1,100 to 1/32,000
–  theoretically, it should be 1/(4 billion)

•  To make things worse
–  performance-oriented computing favors OS-bypass protocols

»  relative to TCP
–  message integrity solely relies on link-level checksum

* J. Stone and C. Partridge “When the CRC and TCP checksum disagree” in ACM SIGCOMM 2000

Terminology
•  Error/failure

–  system behavior
deviates from
specification

–  omission
»  occasionally no

response…
–  response

»  incorrect
–  performance

»  response is correct
but not timely

–  crash/hang

•  Fault
–  single event upset

»  bit flips

–  single event burnout
»  power surge

–  Bohrbug
»  determinism

–  Heisenbug
»  race condition
»  rare input

–  ageing
»  resource exhaustion

is the source
of

is the
manifestation

of

Experiments
•  Goal: study the impact of bit-flip faults on MPI codes
•  Rationale

–  it is easier to detect hard errors and assess their damage
–  what about transient faults?
–  crash? hang? incorrect output? …

•  Approach: fault injection
  Software-based

–  inexpensive and portable
–  targets a wide range of

components
–  OS, libraries, applications ...
–  address bus, ALU, memory ...

•  Hardware-based
–  expensive
–  heavy ion bombarding or lasers
–  pin-level probes and sockets
–  Alpha particles, bit-flips, power

surge, 0/1 stuck-at ...

Register Fault Injection
•  Processor (x86)

–  User-space injection
–  Regular registers and x87 FPU registers
–  No injection to special purpose registers (need root privilege)

»  System control registers, debug and performance registers
»  Virtual memory management registers, MMX/SSE..

–  No injection to L2/L3 caches, TLB

Memory Fault Injection
•  Memory

–  Focus on application memory
–  Injection addresses have uniform
 distribution.
–  Skip library memory

» MPI and shared libraries

–  Text, Data, BSS
–  Heap and stack

Linux Process Memory Model

Message Fault Injection
•  Simulate faults that link-

level checksums miss
–  Use MPICH for

communication
–  Inject at the level closest to

operating system
»  but avoid perturbing the

operating system (for
testability)

–  Can affect all kinds of
messages

»  Control, point-to-point,
collective operations…

Memory Fault Injector
•  ptrace UNIX system call

–  Attach to and halt a host process
–  Peek/poke register and memory contents (like gdb)

•  Static objects (Text, Data, BSS)
–  Used nm and objdump utilities to find the range of injection
–  Skipped all MPI objects

•  Dynamic objects (Heap and stack)
–  Created customized malloc/free

»  separates application objects from MPI objects
–  Examined return addresses in stack frames

»  determine the range of stack injection

Message Fault Injector
•  MPICH

–  Developed by Argonne National Laboratory
–  Highly portable MPI implementation
–  Adopted by many hardware vendors

•  Fault injector
–  Modified MPICH library
–  Uses “ch_p4” channel (TCP/IP)
–  Faults injected in the payload

»  immediately after receipt from a socket
–  Both MPICH and user applications are vulnerable to message faults

Experimental Environment

•  A meta-cluster formed from two clusters
– Rhapsody

» 32 dual 930 MHz Pentium III nodes
» 1 GB RAM/node
» 10/100 Gigabit Ethernet

– Symphony
» 16 dual 500 MHz Pentium II nodes
» 512 MB RAM/node
» Ethernet and Myrinet

Fault Assessment Code Suite

•  Cactus Wavetoy
–  PDE solver for wave functions in physics
–  Test problem

»  150x150x150 for 100 steps
»  196 processes

•  CAM
–  Community Atmospheric Model
–  Test problem

»  default test dataset for 24 hours of simulated time
»  64 processes

•  NAMD
–  Molecular dynamics code
–  Test problem

»  92,000 atoms and 20 steps
»  96 processes

Injection
Location Cactus NAMD CAM
Memory 1.1 MB 25-30 MB 80 MB

Text Size 330 KB 2 MB 2 MB
Data Size 130 KB 110 KB 32 MB
BSS Size 5 KB 598 KB 38 MB

Heap Size 450-500 KB 22-27 MB 8 MB
Message 2.4-4.8 MB 13-33 MB 125-150 MB

Test Code Suite Characteristics

Experimental Fault Assessment

•  Failure modes
–  Application crash

»  MPI error detected via MPI error handler
»  Application detected via assertion checks
»  Other(e.g., Segmentation fault)

–  Application hang (no termination)
–  Application execution completion

»  correct (fault not manifest) or incorrect output

Cactus Wavetoy Results

500-2000 injections for each category

NAMD Results

~500 injections for each category

CAM Results

~500 injections for each category

Register Injection Analysis
•  Registers are the most vulnerable to transient faults

–  39-63% error rate overall
–  Results could depend on register management

»  Live register allocation and size of register file
»  Optimization increases register use

•  Error rates for floating point registers are much lower
–  4-8% error rate
–  Most injections into control registers do not generate errors

»  Except the Tag Word register, which turns a number into NaN
–  Injections into data registers do not yield high error rates

»  At most 4 out of 8 data registers are in use
»  A data register is actually 80-bit long, but only 64 bits can be read out.

Memory Injection Analysis
•  Error rates for memory injections are very low

–  3-15% error rate
–  Spatial locality: Memory is not accessed
–  Temporal locality: Memory is overwritten before reuse

•  Working set analysis
–  To understand memory access behavior
–  Collected memory load data

» Using Valgrind, an open-source x86 memory debugging tool

Working Set Analysis
•  Definition of working set at time t

–  Size of accessed memory since t
–  Non-increasing

•  Larger working size → Higher chance of
fault-induced errors

Memory Access Behavior

Memory Access Behavior

Message Injection Analysis
•  NAMD and CAM are sensitive to message faults

–  38% and 24% error rates, respectively

•  NAMD
–  Built-in message integrity checks are lightweight and effective
–  46% of errors are detected, only 28% of errors are incorrect output

•  CAM
–  only 3% of errors are caught, 71% of errors are incorrect output

•  Cactus Wavetoy’s error rate is very low
–  The output we used to verify correctness is in plain text format
–  Low order decimal digits are not reported
–  Only perturbation in significant bits will manifest in a short run
–  After more steps of execution, the error will manifest

What is an Exascale System?

•  Embrace failure, complexity, and scale
–  a mind set change

Failures and Autonomic Recovery

•  106 hours for component MTTF
–  Sounds like a lot until you divide by 105!

•  It’s time to take RAS seriously
–  Systems do provide warnings

»  Soft bit errors – ECC memory recovery
»  Disk read/write retries, packet loss and retransmission

–  Status and health provide guidance
»  Node temperature/fan duty cycles

•  Software and algorithmic responses
–  Diagnostic-mediated checkpointing
–  Algorithm-based fault tolerance
–  Domain-specific fault tolerance
–  Loosely synchronous algorithms
–  Optimal system size for minimum execution time

Fault Tolerance Support in MPI
•  MPI is a standard, not an implementation

–  MPI standard: “After an error is detected, the state of MPI is
undefined”

–  Most implementations: Abort whenever there is any error.
•  What about MPI_Errhandler_set API in MPI 1 ?

–  Not what you think !
–  Only handles semantic errors such as sending messages to a non-

existing MPI process.
•  What about MPI 2 standard?

–  Can spawn MPI processes dynamically.
–  Has listen/accept/connect BSD socket-like APIs.

•  MPI 3 work-in-progress
–  Redefines MPI semantics: e.g. Failed MPI processes treated as

non-existing MPI processes
–  MPI 3 FT Working Group: http://www.mpi-forum.org

Conclusions
•  The most damaging soft bit errors

–  Register and message contents
•  Memory errors, albeit less likely

–  Are still a critical failure mode for large systems
•  Application internal checks can catch errors

–  Defensive programming is important at scale
•  MPI Standard

–  Supports very minimal error detection and recovery
–  Fault-tolerant MPI support and extensions are needed

•  It’s time to take reliability seriously
–  RAS is critical to continued system scaling

