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Abstract

The links between identification and control are examined. The main trends in this research area are summarized, with particular focus
on the design of low complexity controllers from a statistical perspective. It is argued that a guiding principle should be to model as well
as possible before any model or controller simplifications are made as this ensures the best statistical accuracy. This does not necessarily
mean that a full-order model always is necessary as well designed experiments allow for restricted complexity models to be near-optimal.
Experiment design can therefore be seen as the key to successful applications. For this reason, particular attention is given to the interaction
between experimental constraints and performance specifications.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction be justified is for the commissioning of model predictive
controllers.
Ever increasing productivity demands and environmental It has also been recognized that models for control pose
standards necessitate more and more advanced control mettspecial considerations. Again quotin@dunnaike, 1996
ods to be employed in industry. However, such methods usu- “There is abundant evidence in industrial practice that
ally require a model of the process and modeling and systemwhen modeling for control is not based on criteria related
identification are expensive. Quotin@gunnaike, 1996 to the actual end usehe results can sometimes be quite
“It is also widely recognizedhoweverthat obtaining the disappointing:
process model is the single most time consuming task in the Hence, efficient modeling and system identification tech-
application of model-based contrbl. nigues suited for industrial use and tailored for control de-
In Hussain (1999jt is reported that three quarters of the sign applications have become important enablers for indus-
total costs associated with advanced control projects cantrial advances. The Panel for Future Directions in Control,
be attributed to modeling. It is estimated that models exist (Murray, Astrom, Boyd, Brockett, & Stein, 2003has iden-
for far less than one percent of all processes in regulatory tified automatic synthesis of control algorithmaith inte-
control. According tdesborough and Miller (2001pne of grated validation and verificatioas one of the major future
the few instances when the cost of dynamic modeling can challenges in control. Quotingvurray et al., 2008
“Researchers need to develop much more powerful design
tools that automate the entire control design process from
- model development to hardware-in-the-loop simulation.
' = T'h.is paper was not presented at the 13th ]FAC symposium on system Spurred by the recognized problems, identification for
][de”“f'cf'j‘t'o.”' SYSID-2003, Routerdam, NL. This paper was recommended 6| hag heen one of the most active areas in system iden-
or publication in the revised form by Guest Editors Torsten Soderstrom, | . N o
Paul van den Hof, Bo Wahlberg and Siep Weiland. tification over the last decade. Since the joint identification
*Tel.: +4687908464; fax +4687907329. and control problem shares the same elements as any engi-
E-mail addresshakan.hjalmarsson@s3.kth.g¢. Hjalmarsson). neering application where system identification is involved,
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much work under the “umbrella” of identification for control  to thedesign of the identification experime@iearly, if the
has general applicability and it seems fair to say that no experiment ensures that all features of the system relevant
other area of identification has contributed as much to the for control design are present in the data, this objective can
basic understanding of system identification during the last be achieved. Another characteristic feature of the control
decade. application is thait may not a priori be known in which

So what are the issues? Well, to get a first hint consider frequency range an accurate model is requigdce this
the following (oversimplified) problem a control engineer depends on performance limitations of the system, some of
might be faced with: which typically are unknown a priori.

We have this prior knowledge of the process. You are al-
lowed to perform a closed-loop identification experiment
with the existing controller in the loop. The experiment
should be as short as possible and should disrupt the pro- 1.3. Compatibility requirements
cess minimally. We think we would like the rise-time and
settling-time to be this and thabut we are not really sure. The uncertainty description obtained from system iden-
Of coursethe resulting closed-loop should be stable. If you tification is dictated by the model structure and the prior
want to use anything other than a PID-controllgou need  information used; see Section 2. It may not be directly ap-
to make a very strong case for why this is necessary. plicable to a particular control design method. For example,

Clearly, a useful theory should be capable of handling this prediction error methods deliver an ellipsoid in the param-
type of questions. Below we will try to delineate the main eter space whereas robug#t,, design with unstructured
issues involved. uncertainty assumes frequency by frequency bounds on the
uncertainty. Thus, it may be necessary to outer-bound the
uncertainty description and this should be done so as to not
introduce unnecessary conservatism. Another aspect of this
issue is that the order of a robust controller usually depends
not only on the order of the nominal model but also on the
orders of the weighting filters describing bounds on model
uncertainty and performance specifications. Hence, the un-
certainty description may alsofluence the order of the con-
troller.

1.1. The unforgiving nature of feedback

In many applications, performance degrades gracefully
as the accuracy of the model becomes worse. However, in
feedback control instability may lead to disastrous conse-
guences. By the end of the 1980s this issue prompted sig-
nificant efforts to develop identification frameworks which
can accommodate for various types of prior information and
produce model sets to which the true system is guaranteed
to belong so that it can be checked that a designed (robust)
controller at least stabilizes the system. While there is still
a debate on which assumptions are relevant, this line of re-
search has definitely put a finger on the approximate nature
of system identification.

1.4. Summary

The discussion above can be condensed as follows. The
user has a number of design variables such as experimental
conditions, model structure and the performance specifica-
1.2. The forgiving nature of feedback tions available. To be able to select these in a systematic way

such that stability and performance are guaranteed involves:
There are numerous existing successful applications of

PID-control to non-linear processes which are based on sim-s ensuring that the ‘true’ system is accounted for in the set
ple, e.g. first-order, models identified from step response of delivered models.

tests. Hence, itis clear that simple, very crude, models oftens understanding which properties of the system have to be
suffice to give good or, perhaps more accurately, acceptable modeled accurately and which can be treated only super-
closed-loop performance. Behind this is the rationale for ficially and how this relates to the performance specifica-
feedback control: High loop gain in a frequency band makes tjons.

the closed loop system insensitive to the quality of the models designing experiments that reveal this information.

and the properties of the open loop system in this frequencys representing this information mathematically in a way that
band, provided stability can be maintained; cf. having anin- s not overly complex.

tegrator in the controller which gives unity steady-state gain ¢ adjusting the performance demands such that the design

regardless of the open loop steady-state gain. becomes robust given the limitations in modeling accu-
This observation translates into the fact that one would  racy.

want the model set produced by system identification to be

shaped such that high performance can be obtained and als@he first issue is rather delicate as it involves entities that
such that, if desired, additional robustness may be includedare not verifiable, and has quite naturally led to different
with little penalty on performance. This issue relates directly approaches.
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1.5. Outline Generally, a model for such a dynamical system will de-
note a sequence of mappings, + = 1,2,... such that
We will begin this paper with a part (Sections 2—6) on gen- y(t) = f;(u’, e") is the model response to the input sequence
eral modeling principles, with particular attention to issues u(z), t = 1,2,... and the unmeasurable signal sequence
that are of importance for control applications. Modeling (“noise”) e(¢),t=1,2,....
frameworks are discussed in Section 2, where we highlight A model is consistent with the observatio®" if there
the similarity of algorithms ensuing from deterministic and exists a noise sequene& such thaty(r) = f; (', '), t =
stochastic approaches. We also elaborate on the importancd, ..., N holds forz".
of noise prior information. Many considerations in control
are best handled in the frequency domain and in Section 32.2. The concept of unfalsification
we take a closer look at model uncertainty in the frequency
domain. As discussed above, control applications often al- That a scientific theory may be falsified by contradict-
low only very approximate models to be used. We therefore, ing evidence but never validated by corroborating evidence
in Section 4, discuss how to identify restricted complexity was elaborated on by the philosopher Karl Popjgapper,
models without compromising statistical accuracy. Stability 1963. In system identification, it is clear that none of the
and performance guarantees require the true system to be agnodels that are consistent wigh can be discarded unless
counted for in the model set delivered by the system identi- Some prior information is available. We call the set of all
fication. This relates to model validation which is discussed such consistent modetbe set of unprejudiced unfalsified
in Section 5. In Section 6 our observations are summarized.models which we denote by (Z"). This set represents the
The remaining part of the paper is directly concerned with remaining uncertainty of the system dynamics given the ob-
control related issues. Robust control and its links to system served dataZ”. The information contents in the observed
identification are issues discussed in Section 7. The problemdata corresponds exactly to the set of models thatedse
of directly identifying a restricted complexity model useful fied by the observed data. The more “informative” data is,
for control design is covered in Section 8. This is followed the larger is the set of candidate models that can be falsi-
by a section on how to model non-linear systems using linear fied. The set#(z") is of course an enormous set since it
time-invariant (LTI) models. Model free tuning methods are includes all infinite dimensional non-linear models which
discussed in Section 10 while Section 11 covers experimentare consistent with the observations. Hence, it may appear
design issues. Model validation for control is the theme in that measurement data provides very little information.
Section 12. The paper concludes with some comments.
We will restrict attention to time-domain identification, 2.3. Introducing priors
with particular focus on the prediction error method. For
frequency domain methods, the reader is referréiricelon The only possible way to reduce the size of the set of
and Schoukens (2001)cKelvey (2000)or general treatise ~ unprejudiced unfalsified models is to introduce prior infor-
of the subject, and t€hen and Gu (2000and references ~ Mation, both on the system dynamics and the noise. For ex-

therein for more control oriented deterministic approaches. ample, we might immediately be prepared to introduce the
prior that the system is causal. We shall denotegy )

the set of models consistent with data and the prior infor-
2. Information content in the data mation, and we shall refer to this setthe set of unfalsified
models
The question of what information the noisy measurement A common approach is to introduce a parametrized model
data contains regarding the system dynamics is really atstructure, e.g.
the core of system identification. One can view one part of
system identification as the problem of cleaning up the data y — G (0)u + H (0)e + A(u), (1)
with respect to noise as well as possible. In this section we

will discuss the limitations of what can be achieved in this \yhereG andH are transfer functions parametrized By

respect. ® c R", where4 is an unstructured dynamic term and
wheree is a noise signal. Since may be taken such that
2.1. Mathematical models any model in the above structure is unfalsified, assumptions

on the noise are also required. This issue is crucial for the
We will denote the input and output of a dynamical system system identification problem.
by u(¢) andy(¢), respectively. For a signakz),t=1, 2, .. .,
we will use the shorthand notatior¥ for {x(t)}fv:l. We 2.4. Set-membership identification
will often omit the time-argument from signals for ease of
exposition. Theobservedoutput/input signal sequence that The set of unfalsified models becomes manageable for the
is available for the system identification will be denoted model structure (1) by imposing thate S, ande” € S,
ZN ={y(@), u(t)}tN:l. for some suitably chosen sefg and S,. Common choices
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for S, are

S, ={eV : le(r)|<c, t=1,..., N}, 2)
N

Se:{eN: Zez(z)gc}. (3)
t=1

We refer toBai, Nagpal, and Tempo (199&r an analysis

of how these and other types of noise bounds affect the size

of the set of unfalsified models.
The unstructured uncertainty is often taken as LTI and
examples ofS,4 are

Sa={4: Al <7},

Sy= {A =Y dltg*: |5(k)|<C}f‘} .

k=1

(4)

Above | - || denotes the# o-norm, g1 is the backward
shift operator and & 4 < 1. Identification methods that em-
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the corresponding noise sequences are. The model corre-
sponding to the most likely noise sequence is the maximum
likelihood (ML) estimate.

2.6.1. Gaussian prior

To be specific, let us assume that the noise is Gaussian
white noise with variance and denote by(s, M) the noise
signal that makes modeé¥l consistent with the observa-
tions. Then the negative log-likelihood for this noise signal is
given by

N N 19
_ - ] il 2
V(M) = > log(2n) + > log(Z) + i ;Zl e“(t,M). (5)
It is natural to take the set of models that corresponds to

noise sequences with a likelihood higher than a given level
as the set of unfalsified models.

2.6.1.1. Case 1: Known noise variancéVhen the noise

ploy this type of constraints have become knowr_1 as set- Yariance), is known, (5) then leads to the set
membership methods and this has been a very active area o

research during the past two decades. The set of unfalsified

models often becomes very complicated and one importantfq(ZN) =M
research topic has been to find simplified characterizations

using outer- and inner-bounding technigull§nese & Vi-
cino, 199). We refer toMilanese (1998andMilanese, Nor-
ton, Piet-Lahanier, and Walter (199%0d references therein
for further details on set-membership identification.

2.5. Uncertainty model unfalsification

The combination (3) and (4) together with the model struc-
ture

y=G(Ou+ H(O)(e+ Au)

has been studied by Kosut and co-workers in a series of pa-

pers under the labeincertainty model unfalsificatioBased
on results inPoolla, Khargonekar, Tikku, Krause, and Nag-
pal (1994) it is shown inKosut (1995)and Kosut (2001)
that the set of unfalsified models is empty if and only if
there are nd € © andeV e S, that satisfies a certain ma-
trix inequality. For ARX-models, this is a convex feasibility
problem in the unknown8 ande” .

As pointed out irKosut (2001) one may computemin(y),
the smallest (recall thatc defines the size of the noise set
S., cf. (2) and (3)) for which there is some unfalsified model
for a given bound on the unstructured uncertaintly, The
graphy — cmin(y) is referred to as thencertainty trade-
off curveand gives a hint on how dynamic versus noise

uncertainty may be traded-off for a set of unfalsified models.

2.6. A likelihood approach to unfalsification

One way to treat the noise is to introduce a probability

measure, i.e. a measure of how likely different noise se-

o1 - 2 <
: Z—;LZe(t,M)\c (6)

=1
for somec. Hence we see that the stochastically motivated
likelihood approach leads teet-membership identification
with the set (3) characterizing the noise under Gaussian as-
sumptions.

The principal difference between the likelihood approach
and a deterministic set-membership approach lies indiew
chosen. In the likelihood approach one could argue that the
constant should be selected such that there is only a small
probability that the true system is (erroneously) falsified.
To this end, consider thatz, M) really is Gaussian white
noise with variancel, i.e. M is a model that satisfies our
assumptions and should rather not be falsified. Then we have
that

1 N
=D e M)~ AN,
C=1

By taking ¢ = 3x2(N), where y2(N) is defined by

P(X <)2(N)) = o for ay?(N) distributed random variable
X, in (6) the probability of falsifying this model will be
1— o« (e.g. 0.1%).

In practice it is, of course, computationally infeasible to
order all models and some parametrization has to be intro-
duced. In order to focus on the noise issues, we will in the
remaining part of Section 2.6 restrict attention to the follow-
ing simple model

y() =" ()0 + e(r) @)

wheree denotes the noise, whegeis a vector of determin-
istic quantities and wher@ € R" is a vector of unknown

guences are. Equipped with this measure, we can in princi-model parameters. We will comment briefly on the case

ple orderall models we can imagine according to how likely

where unstructured uncertainty is present in Section 2.6.1.4.
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For (7) we have that is given by
e(t,0)=y(t) — " (1)0 ®) N
() = 1 Z e, 0)
is the noise for the model corresponding to parameter vector N Pt
0. By completing the square, ctjung and Hjalmarsson i
(1995) for which

al a A 5 5 V) = X log2 NN oglt 3 21,0
S 2. 0= A0y + O — 0 Ry -y, (@) NM=7logEm 45 45 log N;“’ '
t=1 t=1 =

. o LA . This implies that the parameteighat will belong to the set
whereRy and the maximum likelihood estimatig (which of unfalsified models, i.e. the set of unfalsified parameters

in this case corresponds to the least-squares estimate) arg s given by
given by '

N
AN {9: G e)gc}. (13)

=1

N N
Rv=Y o0e'®). On=Ry"> onyw®).  (10)
=1 =1
. L To ensure that the true (if there is such a parameter) is in
Hence, the set of unfalsified models is given by this set with probabilityx, the constant should be taken as

_ 1 N .
gzNy=10: 71Zez(z,em C:< n

=1 —n

N

Fy(n, N —n) + 1> Y 2. Oy,

=1

where the constarit, (n, N—n) is defined byP (X < F,(n, N—

n)) = o whereXis F(n, N — n) distributed. This gives that
The thresholdy2(N) in (11) is data-independentt is, in (13) can be written as

general, possible to obtain a tighter set by letting the thresh-
old bedata-dependenConsider again (9), given the obser-
vations, the first term of the right-hand side is completely
known whereas the second term is known toyBé:) dis-

A~ R N
0T B 0 - 0N><x§<zv>} L@y

Rn
/(N —n) YN, e2(1, Oy)

G(zNy = {9: %(9— 0T

tributed when? is the true parameter vector. Hence, the set % (0= 0n) < Fy(n, N — n)} ) (14)
4(z")
1N 1N . This follows by way of (9). Now,
=10: 53 0. 0<5 Y a0 + 45w
i A 1 A T RN A
n R A —n 2r=1¢°, UN
= {0: (00w == (0 - 9N><x§<n)} (12) Vot

is F(n, N —n) distributed wher is the true parameter vec-
is the set of models having the largest likelihoods and be- tor. Thus, the set in (14) contains the tiith probability
ing such that the posterior (to the observation of the data) « as desired if there is such a “true” parameter.
probability that the true system is outside this set is d.

2.6.1.3. Relation to the prediction error methodl'he set
2.6.1.2. Case 2: Unknown noise varianc&Vhen / is un- (14) corresponds exactly to a confidence region for the true
known it can be included as an unknown parameter in the parameter when the least-squares estimate for the model (7)
model, and, hence, the set of unfalsified models consists ofis used [(jung, 1999). The probability that the true pa-
pairs (0, ). Now, however, the choice of the threshold for rameter is outside this set is-1«. Hence, we can inter-
the likelihood function defined by (5) becomes somewhat pret least-squares identification of linear regression models
problematic. It is not possible to a priori set the threshold under Gaussian assumptions as a likelihood-based unfalsifi-
so that the true paramete(&, 1) belong to the set of un-  cation method. Since the least-squares estimate is identical
falsified models with a pre-specified probability, as could to the maximum-likelihood (ML) estimate under these as-
be done when the noise variance was known. However, sumptions, the confidence region is also the smallest possi-
given that0 is the parameter of interest, one can set the ble. That there is a close connection to the ML-method is of
threshold such that the probability that the tii¢ogether course natural as the likelihood approach to model unfalsi-
with someA/ is in the set of unfalsified models with a pre- fication is based on the likelihood function.
specified probability. The argument is as follows. Kebe For model structures beyond the linear regression type,
arbitrary. The parametet that minimizesVy (M) given 0 the equivalence between likelihood-based unfalsification and
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the confidence region for the prediction error method (PEM)
and the ML-method can be shown to hold asymptotically.
For brevity, we discuss this for the case whieis unknown
only.

Consider the LTI model structure

y(1) =G(g, Du() + H(g, O)e(),

where H is monic, stable and minimum phase, which is
parametrized in terms df € ©® C R". The signale repre-
sents noise. The noise given that the parameter vectbr is
is given by

e(t,0) = H (g, 0)(y(t) — G(gq, Ou(r)).

This quantity is also known as the prediction errbjufig,
19991 since it is the error in the one-step ahead predictor of
the output when thenodelcorresponding to the parameter
vector0 is used.

The prediction error estimate with quadratic criterion is
defined as

(15)

(16)

N

. 1
Oy =arg minJy(0), JyO) ==Y &, 0.
0c® N ;

Neglecting transients, this is also the maximum-likelihood

estimate when the distribution is Gaussian and hence it mini-

mizes the negative log-likelihood (5) within the model struc-
ture.
Under weak assumptiongjgng, 19990, it holds that
lim Oy = 60*2 arg min lim E{Jy(0)} w.p.1.
N—co 0c@cRr N—

17

It holds also that the prediction error estimépe converges
in law to a normally distributed random variable
N@Oy — 092 10, P) asN — oo (18)

for some covariance matrik.

Suppose now that the true system is in the model set

H. Hjalmarsson / Automatica 41 (2005) 393-438

and, hence,
[AVAS
=10: 0—-0p7 Ry 0 —0y)
' 1NN e2(t, Oy)
<x§(n>} (23)

is a confidence region which asymptotically includes the true
parametel)® with probability o.

Let us now characterize the set of unfalsified models in
the likelihood-based approach given that (19) holds. This is
in general a difficult task, due to thétappears non-linearly
in the prediction error. However, for small enough boend
all models in this set will have to have parametgdose to
the prediction error estimatéy. In this situation, a second
order Taylor expansion gives

N N
R0~ A Oy) + (0 — 0n) Ry (0 — Oy)
=1 t=1
(24)

whereRy is given by (21). Compare this with (9). From (22)
we have that, suitably normalized, the second term of the
right-hand side of (24) is approximatel¥(n) distributed for
largeN. Using these observations, we can now proceed as in
Section 2.6.1.2 to obtain that the set of models corresponding
to the most likely noise sequences and which is large enough
that the probability that the true system belongs to the set is
o, can be described approximately by set (23).

For a recent study on conditions for the asymptotic pre-
diction errror theory to be valid, sdgittanti, Campi, and
Garatti (2002) For recent results on finite sample proper-
ties we refer taMeyer and Campi (2002L8ampi and Weyer
(2002) Similar conclusions can also be made when the noise
is not Gaussian but we will not pursue this topic further.

(notice that this is an assumption that we have so far not 6 1.4, Case 3: Unstructured uncertainty preserfeor

used in Section 2), i.e.
y(t) =G(q, 0°)u(t) + H(g, 0%)es (1),

wheree, is (a realization of) white noise, for sontg <

©®. Then* = 0° (under suitable identifiability conditions
(Ljung, 1999h) and the expression for the covariance matrix
P is given by

(19)

P =AR"Y, whereR =E{y(t, 0", 0%}, (20)
with (¢, 0) = —de(z, 0) /d0.

With
Ry=N-R=N-E{, 0,0}, (21)

it follows from (18) that asV — oo,
RN

— (° — ) > ) (22

0° —0n)"

model structures of type (1) one can also pursue a likelihood
approach. The set of unfalsified models will correspond to a
set of parametric uncertainty, cf. (23), together with the un-
structured uncertainty. However, the parametric uncertainty
set will be larger compared to (23) since it corresponds
to all parameters for which there existss4 € S, such
that the likelihood of the corresponding noise sequence is
acceptable.

2.6.2. Uniform prior

The assumption that the noise distribution has support
[—c, c] leads to a set of unfalsified models of the type (2)
(Ninness & Goodwin, 1995 In this set, all models are
equally likely.

The model set is in this case a polyhedron which can be
approximated by an ellipsoid, i.e. with a set of the type (23).
The problem of determining the outerbounding ellipsoid of
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minimal volume is a convex optimization probleRrpnzato
& Walter, 1999.

2.7. Stochastic embedding

Just ase may be modeled in a stochastic framework, the
unstructured uncertainty in the model structure (1) may

399

For stochastic models, we discussed the use of the likeli-
hood function as a criterion for ordering models. This lead
to the definition of the set of unfalsified models as the set of
models for which the likelihood function is above a certain
threshold. The threshold was determined so that the proba-
bility that the true system is outside this set, i.e. is falsified,
is smaller than some given (small) number. It was shown that

be modeled in a stochastic framework. This leads to what this set is equivalent to a standard confidence region for the

is known as the stochastic embedding appro&bogdwin,
Gevers, & Ninness, 199Z0o0dwin, Braslavsky, & Seron,
2002.

2.8. On the value of noise priors

Let us return to the likelihood approach in Section 2.6.

prediction error method. The likelihood-based approach to
obtain a set of unfalsified models is thus just another way of
viewing the prediction error method. However, an important
insight is that all models in a set of unfalsified models have
one thing in common: they all have the likelihood function

larger than a certain threshold. As we will see in Section 4.4,
this observation will be instrumental when discussing statis-

We started out in Section 2.6.1.1 by assuming that the noisetically accurate models of restricted complexity, i.e. models

variance/ was known. This resulted in the set (11). Notice,

that for a given model structure there may be no model at

all that belongs to this set—a very powerful result! Poor
models will thus be rejected. Unfortunately, overly complex
models will not be falsified and thus overmodelling can be
a problem. One possibility of dealing with this problem is
to use Occam’s razor:

Pick a model with as low complexity as possible in the
set of unfalsified models.

There is often no reason to favor any other model. In

having lower order than the true system.

We noted in Section 2.8 that it is difficult to quantify the
information contents in data when the model structure is
uncertain. However, one recurring theme in this paper will
be that it is possible tensure that the information required
for our particular application can be made available by
proper experiment design

There is an on-going healthy cross-fertilization of ideas
between deterministic and stochastic approaches, see e.g.
Ljung and Hjalmarsson (1995)Tjarnstrom and Garulli

Section 8.11, however, we will see that there may be reasong(2002) Partington and Makila (1999Hakvoort, Schrama,

for other choices.

and Van den Hof (19944e Vries and Van den Hof (1995)

In Section 2.6.1.1 we also observed that we could shrink Milanese and Taragna (1999)empo, Bai, and Dabbene
the size of the set by looking at the data before the thresh-(1997) Bai, Ye, and Tempo (1999For excellent overviews
old was selected. This resulted in the set (12). Notice that of different modeling frameworks we refer Makila, Part-

for any given model structure, the set of unfalsified mod-
els will now be non-empty. By making the threshold data

ington, and Gustafsson (1998hd Ninness and Goodwin
(1995)

dependent we have gained in accuracy but the price paid is

that the objectivity of the criterion used in (11) has been

3. Frequency domain characterization of the set of

lost. When the noise variance is unknown, there is no objec- ynfalsified models

tive criterion. As for (12), the set of unfalsified models (14)
will be prejudiced on the model structure. Different model

In the previous section the discussion was concerned with

structures now have to be Compared against each other |r':he characterization of the set of unfalsified models in the

order to find the “right” structure. This leads us to model
validation which we will discuss in Section 5.

parameter space. However, as we will see in Section 7, when
the model set is to be used for control design it is of interest

To conclude, we have argued that knowledge of the noise 0 characterize the model set in the frequency domain. We
characteristics is extremely valuable. As pointed out, e.g. in Will in this section focus on the prediction error method.

Pintelon and Schoukens (20 dLjung (1999a) the noise

sequence itself can be estimated if periodic inputs are used,y(t) — Go(qu(t) + Ho(q)eo (1),

We will assume that the true system is given by
(25)

cf. the case when the input is zero, then the output equals

the noise.

2.9. Summary

wheree, is white noise with varianceg and whereH, is
stable, monic and minimum phase. We will denote the power
spectral densities afand H.e, by @, and®,, respectively.
The model structure is given by (15) withe R".

In this section, we have presented identification as a way
of producing sets of unfalsified models and illustrated that 3.1. The bias error
both deterministic and stochastic modeling paradigms fit into
this framework. Interestingly, it seems as if many of these  For the PEM using the LTI model structure (15), the limit
different approaches result in similar unfalsified model sets, estimate (17) can be characterized indirectly in the frequency
seeReinelt, Garulli, and Ljung (2002) domain using Parseval's formula. When the true system,
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given by (25), is stable and operating in open loop, and when  The key to such results is a first order Taylor approxima-
G andH areindependently parametrizede. 0 = [, 7|7 tion of the variance
andG = G(n); H = H(¢), the limit estimate is defined by

L dG@Ee, 0)\* dG@E?, 0)
. OV) A
7 = arg min N -Var(G y(€%)) < 90 ) P a0 . (29)
1

- _ ' o, () where the derivatives and are evaluated afl = 0*. This
/ |Go(€”) — G(E®, )| % dow (26) expression is exact @ — oo when the model structure is

- |H (&2, &) linearly parameterized
wheret* is the limit estimate of. The limit estimateG (*

J t U Gig.0) =TT ()0, (30)

thus minimizes a weighted”>-norm of the error between
the model and the true dynamics. I_t is thus in general not in which case @/d0 =T
possible to guarantee frequency wise error bounds on the

. . o L For general parametrizations some caution is neces-
bias error. This may be critical in some applications such as sary when using (29) as it is an approximation, see, e
control design. We shall pursue this issue in Section 4.4. Y 9 PP y ' €9

. S Vuerinckx, Pintelon houkens, and Rolain (200djer
When (25) holds and the system is operating in closed- uerinexx, telon, Sc oukens, a d Rola (. 0 €
. . L this is illustrated for confidence bounds on estimated zeros.
loop with a stabilizing controlle€ and an external excitation

; . . o In the mid-eighties, the following result was derived (pre-
r(t) (the reference signal) such that the input signal is given sented here for the case of open loop operatiajyng &

by Yuan, 1985; Ljung, 1985
u() = C(g)(r (1) — y(1) i)

Py(w)’

lim  lim EVar(éN(eiw)) - (31)
m

it holds thatd™ = arg min m—0o0 N—oo
0cO
© wherem is the model order. Result (31) implies that

/ {|Go(ei“’) — G(E?,0)?|CS(Go, )P, o N (@) 2 m (32)

1S(Go, O)|? QS} 1
IS(G(0), )2 "

i , (27) for large enough model orden and number of samples.
|H (e, 0)[? A complicating factor in the derivation of (31) is that for
certain model structures such as Box—Jenkins and output-
error, pole-zero cancellations occur when the model order
exceeds the underlying true system order. In order to en-
sure a well defined limit estimate, the cost function has to
be regularized in the analysis. Minness and Hjalmarsson
(2004a)the effect of this regularization on the variance is

) o ) ] studied and it is shown that as the model order tends to in-
A simple characterization of the uncertainty in the fre- ity it is the regularization only that determines the vari-

quency domain is in terms of the variance of the frequency gnce. In fact, the result (31) holds for these types of model
function estimates v (8)2G(€”, Oy): structures only when the regularization term is of the form
3110 — 0J|2 for small 6 > 0. Choosing another regularization
point than the origin will result in another variance.

An approximation ofk, x(w) with, in many cases, im-

where S(G, C) = 1/(1 + GC). An alternative expression
which characterizes the bias introduced by an erroneous
noise model can be found Forssell and Ljung (1999)

3.2. Variance of frequency function estimates

Var(Gy (E”)2E[GE?, Oy) — E[GE®, On)112].

Introducing . .
proved accuracy was proposedNimness, Hjalmarsson, and
rime N - @y () Gustafsson (1999)n Xie and Ljung (2001)an expression
Kn, v (@) = Var(G y (€)) B for i, (w)21im y_ o0 k. v () Was derived for the case of

a model with fixed denominator and fixed moving aver-
where we for ease of notation have chosen to indicate only age noise model excited by an auto-regressive (AR) input.

the dependence af on n andN explicitly, one can write This represented a major step forward as no asymptotics
in the number of parameters (or model order) is involved,
Var(G y (€9)) = kv (o) Py (@) ’ (28) thus avoiding the need for regularization. Winness and
N - @y (w) Hjalmarsson (2004dhis result was generalized and for the

A ) ] Box—Jenkins case of independently parametrized dynamics
whenever ValGy(€”)) is well-defined. The reason for 44 noise models the result reads as follows.
this factorization of Va(G y (€%)) is that under certain as-
sumptions exact expressions or accurate approximations to
Kn, N (W) exists. 1x* denotes the complex conjugate transpose.
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Proposition 3.1. Suppose that the true system is operating direct, indirect or joint input—output identification is used

in open loop and given by
Bs(q)
As(q)
where v(t) = H,(q)eo(t) for some white noise sequence

y() = u(t) +v(),

when (32) is valid Gevers, Ljung, & Van den Hof, 2001
As noted invan den Hof (1998)the variances for these dif-
ferent methods are likely to be different for finite model or-
ders. Using Proposition 3.1, it is shownNiinness and Hjal-
marsson (2004kthat the accuracy of different methods may

eo(t). Assume that the system is in the model set. Letindeed be very different. This has also been supported by

G(q,0)=q*B(gq)/A(q) with m;, parameters inB(g) and
m, parameters inA(q).
Under the condition that

A+2A2H, ) DY2, (33)

wheredﬁ/2 is the stable minimum-phase spectral factor of
the input spectruris a polynomial inz~1 of degree at most
mgy + myp, it holds that

. A 4

lim N -Var(Gy(E?) =k, (w) ﬂ
N—o0 D, (w)
where

mq+mp v 12
1— ¢l
A >

, = —_ 34
Kn () ; T (34)
whereé,, k=1, ..., my+mp, are the zeros af s A+ (7).

Comparing (34) with (32) we see that the factor(the

considerations in the parameter domdiorssell & Ljung,
1999.

Remark 6. For finite impulse response (FIR) models, an
exact expression fot, y (o) can be derived when the num-
ber of spectral lines in the input equals the model order
(Hjalmarsson & Ninness, 2004

3.3. The gain error

Assume now that the true system (25) is in the model set,
i.e. (19) holds. Assume further that the confidence region for
the prediction error method is given I%(Z") defined in
(23). As we will see, for control design purposes it is often
sufficient to be able to characterize the gain error

1Gn(E7) — Go(e)].

In going from parametric uncertainty to frequency domain

model order) is replaced by a frequency dependent factoruncertainty the following lemma, which is a special case of

K, (w) which is a function of the poles of+.

Remark 1. Notice thatffn Kn(w) do=m,+mp and hence
that there is a “water-bed effect” in that a smg|lin some
frequency region has to be compensated for by higtin
some other region.

Remark 2. Notice that the result holds, e.g., if the noise
model is of MA-type and the input spectrum is of AR-type
andmy is sufficiently large.

Remark 3. The result seems to hold approximately with

Lemma 3.1 inWahlberg and Ljung (19923nd Theorem 1
in Bombois, Anderson, and Gevers (20Q0da)useful.

Lemma 3.1. For x,z € R", 0< Q0 € R™" it holds

0 r<e = 12"x12<e* 0z (35)
When the transfer function is linearly parametrized (30),
Lemma 3.1 applied to the inequality in (23) gives the fol-

lowing upper bound on the gain error

IGN(E?) — Go(€”)>< 12 (n) % r*@°)Pre®), vo

good accuracy also for cases where the system is notina ) - ) _
Box-Jenkins model set but when this model structure is flex- Which holds with probabilityz. In view of (29), the inequal-
ible enough that the bias error for both the system dynamics /Y @bove is equivalent to

and the noise spectrum is small, and H, should then be
replaced by the corresponding models in the liMit> oco.

Gr(E°) — G @ISy ) VarGy @),

Notice that this implies a different condition on the orders Using (28), we have the bound

m, andm, than if the correct model structure was used.

Remark 4. The result seems to hold approximately with

good accuracy also when the input can be well approximated

o | Dy ()
wy _ wy< 2 _ v\
Gn(E?) - Go(@ >|N\/x1<n)r<n,w<w>N, oo @9

by an AR-process. The spectral factor corresponding to theof the gain error which holds with at leastx 100% proba-

approximating process should then be used insteabﬁ/cff

in (33). Notice that this implies a different condition on the
model ordersn, andm; than if an input of AR-type was
used.

Remark 5. In closed-loop identification, the variance of

bility. Because of its relative simplicity and the explicit ap-
pearance of interesting quantities such as input and noise
spectra in the expression, we will use (36) as the generic de-
scription of confidence regions for the gain error in the fre-
guency domain. SeBombois et al. (20004&pr an insight-

ful discussion on how confidence bounds in the parameter

the frequency function estimate is independent of whether domain and the frequency domain relate.
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Full order model Full order controller wheree, (1) is white Gaussian noise with variange where
the ordern is very large and where the inputis white
Data + Priors Gaussian noise with variandg.
Suppose that one is interested in estimating the static gain
Reduced order mode————— Reduced order controlie Go(elo) = ZZ:J_ g](z Of the SyStem- In the ML-approach one
would then use a model structure of the same type as (37)
Fig. 1. Different possibilities of mapping data and prior information into  gnd estimat® = (g1, ..., g”]T using least squares. The co-
a controller of reduced complexity. . . A . .
variance matrix of)y is approximatelyi, /(N 4,)l, wherel

) ) denotes the identity matrix, and hence the variance of the es-
We remarl_< that for Im_early parameterized models, the timated static gaifG(e'o)=ZZ=1 4y is approximately given
bound (36) is conservative, but at most a factdg. A b

tight overbound can easily be derived. For non-linearly
parametrized models, the largest bound on the gain error n4,
can be computed exactly using LMIBdmbois, Gevers, & Ni,’
Scorletti, 2000k see als@ansson and Hjalmarsson (2004a)

for computation of the maximum bound over the frequency Since the estimate is unbiased, the mean-square error (MSE)
axis. E[1G (€% —G,(69)]2] will be the same as the variance error.

We see that due to the high system ordethe uncertainty
can be significant even if the input power is large.

4. A statistical view on restricted complexity modeling This observation, naturally, prompts the idea that a
(slightly) biased estimate of the transfer function may give

Models of restricted complexity are often adequate in an estimate of the static gain which is better. For example,
many applications. In process control for example, first or- ysing the model structure

der models with an additional dead-time are often sufficient

even though the true process is much more complicated.y(r) = nu(t — 1) + e(z), (38)
Such models can be obtained in (at least) two principally dif- o

ferent ways: (1) Direct estimation of a restricted complexity for which the static gain estimate(€°) is identical to the
model or (2) Estimation of a full-order model followed by estimate ofy, will have a mean-square error which approx-
model reduction. It is here of interest to know if one method imately is given by

is to be preferred over the other. By full-order model we 2
. . o n
here mean a model which is able to capture the true system 4. D he2 ngl2 + Z o (39)
behavior. In practice full order-models do not exist and we N, N 8k
- . S . k=2
will spend quite some effort in this, and the next, section
discussing this. The first term is the variance of the parameter estimate

In many applications, it is not the model itself that is of caused by the noise The second term is the variance of the
interest but some quantity derived from the model. For var- parameter estimate caused by the unmodeled dynamics. The
ious reasons, it is often desirable to limit the mathematical |ast term is the bias error due to the unmodeled dynamics.
complexity of this quantity. In control design, e.g., it is the The MSE of the static gain for this biased model is signifi-
designed controller that is of intere&ig. 1illustrates vari- cantly lower than for the ML estimate if onlg; contributes
ous ways of obtaining a restricted complexity controller via significantly to the steady state gain!
identification. The same question as for the case of estimat-
ing restricted complexity models arises: Is one of the paths  The above example indicates that the ML-approach may

better than the others? be unsuitable when only approximate models are required
In this section we will discuss these issues from a statis- for highly complex systems. However, the issue is a bit more

tical perspective. subtle than at first glance.

4.1, Statistical advantages of biased models 4.2. A separation principle

From a statistical perspective, approximate modeling is [et @)ML be the ML-estimate off €¢ ®  R" and let
usually motivated by examples such as the following. f: 0 - Qc R™ with m<n. It then holds thatf(?)ML)
is the ML-estimate off (0). This is the so called invariance
Example 4.1. Consider the following high-order FIR sys-  principle for ML-estimation Zehna, 196%(Theorem 5.1.1

tem in Zacks, 1971 Hence, it follows under very general con-
n ditions onf that if Oy is asymptotically efficient, i.e. it
y(t) = Z gou(t — k) + eo(t), (37) is consistent and its asymptotic covariance matrix reaches

k=1 the Cramér—Rao lower limitL{ung, 19990), then f(@ML)
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is also asymptotically efficient. In our context this provides
us with a useful principle:
The estimator of some system dependent quantity that

(i) first estimates a full-order model using an asymptoti-
cally efficient ML estimatgrand then

(ii) uses the full-order system estimate obtained ine@)if
it is the true systerto estimate the desired quantity

403

FIR-modelG (d®, @N), say, and then performing model re-
duction by minimizing

T
/.
with respect toy. In Tjarnstrom (2002)this result is ex-
tended to the case when both the true system and the model

structure are of output error type. The results are proved by
explicitly computing, and comparing, the asymptotic covari-

IG(E?, Oy) — GE?, ) [?D,,(w) d> (42)

is an asymptotically efficient estimator of this quantity under ance matrices for the two estimates.

general conditions.

The same results can be obtained by appealing to the

The invariance principle can thus be seen as a separatiorseparation principle in Section 4.2. It is in fact possible to
principle where the estimation problem is separated from extend the result slightly: Suppose that the true system is
the application dependent part of the problem. We illustrate not of output error type (e.g. of Box—Jenkins type). Then it

this using Example 4.1.

Example 4.2 (Example 4.1 continugd Given the ML-
estimateOy = [81,...,8,]" of the full-order model in
Example 4.1, one may takgr) = g1u(tr — 1) as model, cf.
(38). This will result in a biased estimate of the static gain
with the MSE approximately given by
2

Jee
N/lu

+ (40)

k=2

This expression is the same as the MSE (39) of the static .
gain for the biased estimate in Example 4.1, except that the

middle term in (39) is missing. This term is the variance
contribution from the unmodeled dynamics. Hence, by firs
using a full-order model, inflation of the variance due to
unmodeled dynamics can be avoided.

4.3. Applications of the separation principle

There are many applications of the separation principle

is optimal to first estimate a full-order model and then to
perform the model reduction as in (42). Directly estimating
an output error model, which also in this case asymptotically
minimizes (41), can never give better statistical accuracy.

4.3.2. Simulation

In Zhu (2000)identification for simulation is considered.
It is shown that modeling the spectrum of the noise is better
than ignoring it, even though simulation does not require a
noise model. As ifjarnstréom (2002}his is proved by com-
paring the covariance matrices of the estimated parameters.
This result also follows directly from the separation prin-
ciple.

t 4.3.3. ldentification for control

The separation principle is also useful in identification for
control problems and indicates that, from an accuracy point
of view, no matter what the ultimate objective is, be it mod-
eling to tune a simple PID-controller or modeling suitable
for high performance control, one should alwdiyst try to
model as well as possihlAfter that, any simplifications can
be performed without jeopardizing the statistical accuracy.

presented in Section 4.2, and below some of these will be Hence, returning téig. 1, taking the lower path should be

discussed.

4.3.1. Model reduction
Suppose that it is known that the true syst@mbelongs
to some model structure parametrized by @ but that

avoided if accuracy is a concern. We also conclude that go-
ing from a full-order model directly to a low order controller
or via a high order controller, will not significantly affect
the statistical accuracy. However, there may be other rea-
sons for taking one path or another. Some of the paths may,

the desired quantity is a consistent estimate of the frequencye ., be computationally infeasible, codrons, Bendotti,

function minimizing

/ 1Go(€”) — G@, )2, () doo,

—T

(41)

whereG (g, ) is a low order model parametrized hyFrom

the open loop bias expression (26) it is clear that one way

of doing this is to use an output error structure

y(@) = Glg, Mu(r) + e(t),

and directly estimate;. For FIR-models, it is shown in
Tjarnstrom and Ljung (2002Zhat this procedure leads to a

Falinower, and Gevers (1999)e shall return to the appli-
cation of the separation principle in control applications in
Section 8.

4.3.4. Model validation

The separation principle also applies in model validation.
We shall, however, defer this discussion to Section 5.4.

4.4. Near-optimal restricted complexity models

The issue of biased modeling versus full-order modeling
has yet another twist. Let us return to Example 4.1 once

higher variance as compared to first identifying a full-order more but consider now another input signal.
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N Set of least-squares estimates 4 |

True parameters 3|

< -1 . . . .
N -2 -1 0 1 2 3 4

Fig. 3. Example of ellipsoidal uncertainty region for the least-squares
Fig. 2. Example of uncertainty region for the least-squares estimate in estimate in Example 4.3 when=2. For further explanations see the text.
Example 4.3 whem = 2. For further explanations see text.

Suppose now instead that the input is such that there exists
a unique least-squares estiméte. The confidence region
is then an ellipsoid and let us assume that it is given by the
solid curve inFig. 3. This region happens to contain a line
segment of thegi-axis (the thick horizontal line segment
in the figure). This means that any first order model with a
parameter value on this segment will be as good a candidate
as any second order model inside the confidence region. It
also means that such a first order model will possess all
the properties that models in this confidence region have. In
particular, the distance to the true system in various metrics
can be upper bounded. For the gain error, e.g., the triangle
inequality gives

Example 4.3 (Example 4.1 continugd Suppose that the
allowed input powerE[u2(¢)] is bounded by the constant
Ay Then, clearly a constant input with amplitudé’,, is
optimal for estimating the static gain and even though the
ML criterion for the impulse response coefficients will be
singular, it is easy to show that the estimate of the static
gain will be well-defined and have variance approximately
equal tol./(NZ,), which is lower than, e.g., the minimal
variance (40) for a white input. But now, the same accuracy
is obtained with the simple model (38) since the unmodeled
dynamics do not influence the accuracy of the estimate of
n; in fact, it is accounted for by this estimate which is now
an unbiased estimate of the static gain!
w w

The example above suggests that a judicious choice ofin—|G(el ’n).w Go(® )|.w a A .
put may allow restricted complexity models to be optimal, <IGE?,m) = GE7, 00| +1G (€7, On) = Go(€)]
or near-optimal, see alsdildebrand and Gevers (2003b) ) D, (w)
for further insights. So what property of the identification 2y %&()%n,n () N - @, (@)
problem in Example 4.3 is it that allows the biased estimate
to be optimal? To answer that question, consider, for sim- for anyn on this line segment. The second inequality follows
plicity, the case when the number of impulse response co-from (36) in Section 3.3 (see Section 3 for the notation).
efficientsn = 2. Since the input is not persistently exciting This means that frequency-by-frequency error bounds can
of sufficiently high order, the least-squares criterion will be be obtained for restricted complexity models of this type.
minimized by a set of parameter vectors. This set of least- Compare this with the genera#’>-norm characterizations
squares estimates is the solid lineFigy. 2 Also shown in (26) and (27) which do not allow such an error quantification.
this figure is a confidence region for the true parameter (the Now, the question remains as to whether it is possible to
shaded region in the figure) which in this case is an ellipsoid directly identify a first order model such that it lies on the
that has degenerated into an infinite strip due to the poorly aforementioned line segment. To this end, recall the impor-
exciting input. The least squares estimate of the first order tant conclusion from Section 2.6 that the ellipsoidal con-
model is given by the poirily in the figure. It lies in the set  fidence bound actually is a level set for the least-squares
of least-squares estimates and is thus optimal. It may seencriterion, cf. (9). Hence, suitable low order models are ob-
as a trivial observation but the conclusion is thus that if the tained by making the least-squares criterion small. In par-
identification experiment is performed such that the reducedticular the least-squares estimate for the first order model
order estimate belongs to the set of full-order least-squaresis suitable. This estimate is marked &g in Fig. 3 It
estimates, then it will be optimal. lies on the boundary of a scaled version of the confidence

(43)
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ellipsoid, centered around the full-order least-squares esti-
mate (marked b@N in the figure). It is the ellipsoid of this
type which tangents thgp-axis. In other words, this ellip-
soid is the smallest level set of the least-squares criterion
which includes a point of thg;-axis. We thus conclude that
simple least-squares estimation of a first order model will
in this case give us a model which is inside the confidence
region for the full-order model and, hence, which is such
that, e.g., the error bound (43) applies.

The generalization to other estimation problems is
straightforward: Consider an identified full-order model
with the (approximate) confidence region for the true pa-
rameter vector described by (23). If there is a point in the
confidence region where some element# afre zero, then
these parameters can be omitted in the estimation still giv-
ing an estimate which is inside the confidence region of the
full-order model. We will call such modelsiear-optimal
reduced complexity modelShe norm of the error between

405
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Fig. 4. Mean-square error of estimated frequency functions in Example
4.4. Solid line: Full-order Box—Jenkins model. Dashed line: Second order
Box-Jenkins model. Dotted line: Second order output—error model.

To assess this, 100 models were estimated using different
noise realizations and the sample mean-square error for the

this estimate and the true system parameter vector is at mosestimated frequency functions was computed. This error is

a factor 2 of the norm of the error between the full-order

estimate and the true system parameter vector, cf. (43).
Given that the full-order estimafb\, is available it is easy

to test whether a reduced order estimia{eis near optimal

or not. Combining (23) with (24) gives that

N N . 1 N .
D i) = 3 A 0 <ipm Y € On)
t=1 =1 =1

(44)

has to be satisfied fayy to be a near-optimal reduced com-
plexity estimate.

It should be clear that the bias error is of the same size
as the variance error for this type of estimate. This is in line
with the conclusion ifGuo and Ljung (1994)hat the total
error is minimized by a model where the bias error does not
exceed the variance error.

We conclude this section with an example which illus-
trates that also the noise model is important for near-optimal
restricted complexity models.

Example 4.4. The true system has order 3 and is given by
0.14¢ 1u(r)

(1—0.86™/6¢—1)(1 — 0.8e-i"/64—1)(1 — 0.45¢~1)

+ (1 —0.95¢ Heo(r),

y() =

shown inFig. 4 for the reduced order Box—Jenkins model
(dashed line) and for a full-order Box—Jenkins model (solid
line). Clearly, the errors for the two different model struc-
tures are of the same size.

Fig. 4 also shows the sample mean-square error for an
ensemble of output-error (OE) models

_ bg~*
1+ a1gl 4 axq?

using the same noise realizations as in the Box—Jenkins case.
The sample mean-square error for the OE-models is signif-
icantly larger than for the full-order model, except at high-
frequencies. The OE-model is thus far from near-optimal de-
spite the fact that there are second-order models that can ap-
proximate the true system as well as the full-order médel.
For the OE-model, however, the left-hand side of (44) evalu-
ates to approximately.3x 10* which is significantly higher
than the right-hand side bound of 135. Therefore the OE-
model cannot be near-optimal and it follows that it is not
possible to give any frequency-wise bounds on the error for
this model structure. The only characterization of the error
is given by the bias expression (26) which indicates that the
error should be smaller at high frequencies (as the input is
of high-pass type).

y()

u(t) +e(t),

4.5. The separation principle revisited

where the noise variance is 3. The input signal has high-pass

character with variance 1.3.
Consider first the second order Box—Jenkins model struc-
ture

bq_l

1+ a1g=t +axq~

y(6) = 5 u(t) + (L4 cqg He().

For N = 100 samples we have that the left-hand side of
(44) evaluates to 12 whereas the right-hand side bound
is 135. Hence, the estimated model should be near-optimal.

In this section we have so far argued that one should model
as well as possible in order to reduce the impairing effect
of measurement noise. Referring to the separation principle
in Section 4.2, the full-order model can then be simplified
if required without loss of statistical accuracy.

Now, as we will argue in Section 5.2, full-order models
are esoteric quantities so that one always have to contend

2This we know from the Box—Jenkins case which uses the same

dynamic model as the OE-model.
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with restricted complexity models, not at least in control ap- F(n, N —n)- distributed wher is white noise, so a suitable
plications. To cope with this, we have introduced the concept cross-correlation test is

of near-optimal restricted complexity models. Such a model

is in a statistical sense almost as accurate as any identifie¢y S Fa(n, N —n). (45)

e et e o S can expressy somehat iferety. Lefy be i
' plexity P least-squares estimate, cf. (10), for the following FIR model

on the quality of the observed dafd’: A first order model : )
. . . T . of the residuals:
may be near-optimal if only poor information is available
whereas it may require a 50th order model when many thou- ¢ (¢) = (pT(;)Q + e(?).
sands of high signal-to-noise data samples are available. .
The usefulness of near-optimal restricted complexity It is easy to see that

models lies not only in that they model the true system al- T Ry R

most as accurately as a (thought) full-order model, but also {y = 0y PRp— 0

in thatthey can be used in the separation principle instead /N3 i1 8%(0)

of the unattainable full-order modelo see this, le€= f(0) and hence the test (45) corresponds to testing

denote the mapping from the (thought) full-order model
to the model class of interest, 18ty be the (full-order) E)N —
ML-estimate andj, a near-optimal restricted complexity 1/N YL, e2(1)
model. We observed in Section 4.2 tliax = f(@N) is the

ML-estimate of f(0°). Furthermore, any point within the
confidence region associated Wi%h, will have the same

T R ~
al Oy <nFymn, N — n).

Comparing with (14) (where for this exampéér, @N) =

e(r) — @' (1)0y), we see that this test is closely related to
. 3 o . testing whether the zero modék= 0 belongs to the set of

statistical _accuraAcy asy yv'th'n a factor 2 Now the confi- unfalsified models for the above FIR-model of the residu-

dence regions fofly and<y are related simply by the map- o5 jnder the assumption that the residuals can be modeled

ping f (due to the construction dfy) and sincejy belongs  py this FIR-model. The difference lies in the denominator

to the confidence region associated with, f (7j)will be- which is an estimate of the variance of the residuals of the
long to the confidence region associated wittt)y ). Thus, model error model. Above the estimate is conditioned on
f(1y) will be a near optimal estimate gf(0°). that the true parameter in the model error model is zero

which gives the variance of the original residuals whereas
(14) uses the least-squares estimate of the model error esti-
5. Model validation mate. The difference corresponds to the difference between
hypothesis testing and computing confidence regions.
We saw in Section 2.8 that when a model structure has
been selected, the set of unfalsified modé(¥") can by The above example was used.jnng (1999aYo point out
definition not be falsified by the data" when the noise  that standard model validation tests such as cross-correlation
variance is unknown. One could say that the model builder is tests between residuals and inputs can be interpreted as
trapped inside the model structure. Hence, there is a need tGirst modeling the residuals, with the resulting model named
“look over the fendeo ensure that there are no other model model error mode'and then testing whether the zero model
structures that can represent the data in a more plausiblgs included in the set of unfalsified model error models. In-
way, or alternatively test/(Z") on newdata. This is what  stead of just computing yes/no answers to tests such as (45)

model validation is about! it was suggested that an intuitively appealing way of present-
ing these tests is by plotting the Bode-diagram of the model
5.1. Model error modeling error model with uncertainty regions indicated. From this
insight follows also that more complex models than finite

Consider the following example. impulse response (FIR) models can be used and it is recom-

. . mended that the model structure for the model error model
Example 5.1. Let the residuals of a nominal model be de- should be considerably richer than the nominal model. The

noted bye(r) and leto(r) = [u(t — 1), ... . u(t — n)]'. reader is also referred igung and Guo (1997jor results
Then a standard test-statistic, for testing whether the cross-on how the model error is bounded by test statistics such
correlation between(r) and¢(z) is zero, is given by asly.
N The main message Ifjung (1999a)is that if the nominal
(y = o Z e(t)(t) , model is unfalsified, i.e. the uncertainty region for the model
1N Y e2(t) =1 error model includes the zero model, then, even though

R-1
N the nominal model structure (with its own uncertainty de-

where Ry is defined in (10) and whergx | o=/xTOx. scription) is unfalsified, one should use the nominal model
Normalized by J¥n, this statistic is asymptotically structure together with thencertainty region of the model
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error model Since the model structure for the model error  The inclusion of an unstructured dynamic term such as
model is more flexible than the model structure for the nom- (4) in set-membership identification can be seen as a way
inal model, this will give a larger, and hence “safer”, set of of incorporating this modeling limitation. IrHjalmarsson,
unfalsified models. 199)) a linear time-varying dynamic term is used to account
Notice that this conclusion isompletely in linewith the for unmodeled dynamics and to prevent the modeling accu-
discussion in Section 4.4 if we consider the nominal model racy to increase unrealistically.
as being of restricted complexity whereas the model error The conclusion that the true system cannot be modeled
model is flexible enough to capture all dynamics in the resid- to an arbitrary degree may seem disappointing. One has to
uals. Then it is the uncertainty set associated with the modelaccept that we arat best working with models that are near-
error model that is relevant. optimal cf. Section 4.4. However, the main message in this
We are here at the crux of the modeling problem—the contribution will be that by carefully selecting the input,
model builder wants to be sure that his model set includesthe system can be forced to reveal the properties that are
the ‘true’ system. However, we stress that relevant for the particular application and this is all that is
even though the confidence region associated with theneeded for a successful application. As already pointed out
model error model structure may be more conservative com-in Section 2.9, this will be a recurrent theme in the paper.
pared to the confidence region for the nominal model, there We will approach this topic in the next sub-section. We also
is still no guarantee that this set contains the true system refer the reader to Section 6, Section 11 and the concluding
since we in general cannot guarantee that the model error remarks in Section 13 for further elaborations on this topic.
model captures the remaining dynamics completely.
Nevertheless, the concept of model error modeling has 5 3. validating with confidence
helped make explicit theecessarjeap of faith in system
identification. Suppose that it is critical for the application that any un-
This brings us to the next topic on the agenda. modeled dynamics in a certain model structu#g,  does
not exceed a certain bound. In a robust control context, it
could for example be that the peak gain in a certain fre-

5.2. The true system: a mirage guency band should not exceed a certain value. In such a
. . ] ] situation it would boost the confidence of the model builder
Consider the followinggedanken experimem contin- if it could be ascertained that the model, which we denote

uous time true system is LTI but infinite dimensional with py (&, Ay}, (and its corresponding uncertainty set) would
single poles spaced many decades apart. It is excited by &ye falsified if this is the case.

band-limited input signal which covers frequencies up to a eI, let us examine the outcome if a model error model is
certain frequencysmax which includesn of the true system  estimated using the structuré ¢ to which the unmodeled
poles. As more and more data are collected from this set-gynamics belongs. For simplicity, let us assume that the true

up, the identification procedure appears to converge t0 ansystem is LTI, cf. (25), and that the asymptotic results for
nth order model which seems to be a correct description of the prediction error method in Section 2.6.1.3 are valid. In

the true system as this model will pass all validation tests. s case the residuals (16) are given by
This model is in fact a near-optimal restricted complexity
model as the poor excitation at high frequencies make the A H,
. s . e=(Go—GNUur + — e,

uncertainty of a full-order modeferyhigh in this frequency Hy
region, cf. Section 4.4. However, as even more data samples . .
are collected (still using the same input spectrum), eventu- whereur = nglu, and the modelG y will be falsified if
ally the small discrepancies in the system behavior below the uncertainty region for the model error model does not
frequencymwmax, as compared to anth order model, will include the zero model.
become detectable from data and the model order may need Using (36) and some simple algebra, this is guaranteed to
to be adjusted (upwards) in order for the model to be unfal- happen if
sified.

From this mental exercise, we can conclude that even what 0 A e 5 D, (w)
we may consider as a full-order model, is indeed only a near- Go(@”) = G ()] > 2, [ 75 (M) n n (@) - N, (@) (46)
optimal restricted complexity model. As the signal-to-noise
ratio increases, more and more details of the system can bdor some frequencyy. Above k, y is associated with the
modeled and, further, a different type of input may give a model structure/# ;. Hence, if we want to ensure that
drastically different model, which may again appear to be an model errors larger than some functiétw) are detected,
excellent model of the true system (for this particular input). then the experiment should be carried out such that the right-
These observations support the arguments brought forwardhand side of (46) is less thaiiw). We emphasize, again, that
in Skelton (1989)hat any model is input dependent and that, this conclusion is predicated on the assumption t#aj £
hence, the quest for a model of the true system is futile.  is flexible enough to capture the unmodeled dynamics.




408 H. Hjalmarsson / Automatica 41 (2005) 393-438

small increase around = 7/2 cannot be explained by the
magnitude of the input spectrum around this frequency.
The phenomenon is due to the fackqry (w) in (46). The
conditions in Proposition 3.1 are approximately satisfied for
the present example (cf. Remark 3 after Proposition 3.1) so
for largeN, x, v ~ K, with x, given by (34). A plot of
kn(w) is shown inFig. 8 for the two model orders. The
poles ink,(w) consist in this case of the poles 0.9, 0.9,
0.97€51m/2 of the stable spectral factor of the input spectrum
and the poles of the FIR-model. The double pole at 0.9 gives
a large contribution toc, (w) at low frequencies, whereas
. . . \ the complex poles give a large contribution aroungd /2.
10° 107 107 10° Since all the poles of an FIR-model are at the origifm)
® gets a frequency independent contributiomdfom anmth
_ o _ o order FIR-model. Thusi, (®) increases linearly with the
Flg. 5. I_Das_heg line: |_nput spectrum. Thin _solld line: _true_system. model orderm and this is clearly seen ifig. 8 since the
Thick solid line: uncertainty region around estimated nominal first order - . .
OE-model. solid line (corresponding te: = 100) is offset by 106-
10 = 90 above the dashed line (correspondingnte- 10).
However, therelative increase at different frequencies is
vastly different. At frequencies where the poles of the input
Example 5.2. A third order system with a resonance is cor- spectrum contribute very little, the increase is a factor 10
rupted by white noise and excited with a low pass input, but at frequencies where the influence from the poles of the
also with a resonance (séég. 5. The system is identified  input spectrum is significant, the relative increase is much
using a first order output error model. The model, together less. Hence, the relative increase in the uncertainty bound is
with its uncertainty region (based on that the true system is much less at low frequencies and, especially, arauaa /2.
in the model set) is shown iRig. 5. Clearly the model has
missed the resonance peak and the uncertainty region is mis- The key observation in Example 5.3 is rather unexpected
leading. The model error is shown kig. 6 together with and indeed good news as it implies that the input spectrum
the bound from (46) based on a 10th order FIR model error may be designed so as to allow very flexible model error
model. We see that we can expect to detect the resonancénodels with only minor penalty in the falsification power
in our model error model but not any model error at other at certain frequency bands. This is also consistent with the
frequencies. In the same figure, the uncertainty bound for afact that when periodic inputs are used, over-modeling does
10th order FIR model error model is shown. As predicted, not result in increased variance of the estimated frequency
the resonance peak is detected since the uncertainty regioriunction for frequencies corresponding to the spectral lines
for the model error model does not include zero around the of the input (although problems occur at other frequencies
resonance, whereas the model error at other frequency bandgue to inexact pole/zero cancellations). However, notice also
is not detected. a largex, (w) gives larger uncertainty bounds so, near peaks
of the input spectrum, the bounds can be significantly worse
Notice that condition (46) depends on the input not only than the noise to signal ratio. In these frequency regions the
through the input spectrum but also through the factor high-order approximation (32) typically underestimates the
kn.n(w), cf. Proposition 3.1. This has a, perhaps unex- true variance.
pected, implication.

107 | v

5.4. Validating restricted complexity quantities
Example 5.3 (Example 5.2 continudd Suppose that the
order of the model error model is increased from 10 to  Let G be a given model and suppose that we would like
100. One would then expect the lower bound (46) for de- to find out if this model represents a certain property of the
tecting unmodeled dynamics to increase significantly. For true system in a sufficiently accurate way. This can often be
the case when (32) holds, it should increase by a factor of formulated as that some function of the error between the
+/100/10 ~ 3.2. The bound is shown ikig. 7 for the two model and the true system should be small. To be explicit,
cases. We see that there is actually an increase of approxsuppose that the relative error should be smaller than some
imately this factor, except at low frequencies and around functiony(w), i.e.
w = n/2, which happens to be where the peak of the input i 0
: . e G(@”) — G, (€?)

spectrum is located, where thereoisly a minor increase :

Notice also that even though there is a peak in the input G(e?)
spectrum aiw = /2, it is a factor of 20 smaller than the Suppose now that we would like to validate this pro-
input spectrum at low frequencies, ¢fig. 5 Hence, the perty using a data set". We can now directly refer to the

<y (o).
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Fig. 6. Dashed line: model error. Solid line: lower bound for model errors that are guaranteed to be detected by a 10th order FIR model error model.
Shaded area: uncertainty region for estimated 10th order model error model.

Fi

g. 7. Smallest model error magnitude guaranteed to be detected in model validation. Dasheddi8: Solid line:m = 100.

150 ' ' ] thany(w) for some frequency, the model is invalidated.
,,,,,,,,,,,,,,,,,,,,, ; The same technique can be applied when the function is
100l \ﬁ . non-linear inG,. However, in this case the resulting confi-
dence region may be very complex. Then, a first order Tay-
sol | lor approximation may be used to obtain an approximation
of the confidence region that depends linearly on the co-
0 . . : variance matrix of?)N. In the very interesting contribution
10° 107 10" 10° (Ninness & Henriksen, 200Q3it is discussed how to obtain
® exact confidence regions by way of Markov chain Monte

Carlo simulations.

An alternative to the above procedure is to compute a
model error model for the residuadét) = y(¢) — G(q)u(t),
and use the confidence region associated with this model
error model to estimate the size of the relative error. Notice,
however, that this may not give optimal accuracy as opposed
G(d?) — G (&, @N) to the use of the separation principle.

G(eiw) ’

Fig. 8.k, (w). Dashed linem = 10. Solid line:m = 100.

separation principle introduced in Section 4.2. An asymp-
totically efficient estimate of the relative error is

An(E?) =

WhereéN is any asymptotically efficient full-order estimate 6. Half-time intermission

of the true system parameters. A confidence region for the

relative error can be obtained by mapping the uncertainty set  Before we proceed with the second part of the paper which
(23) through the linear transformatiof . If the resulting is directly concerned with how identification and control
confidence region for the relative error includes values larger interrelates, let us pause and summarize the observations
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so far: We have in Section 5.2 argued that the quest for athe theme in Section 5.3 and we will now use Proposition
full-order model is futile, and thahe best one can hope to 3.1 to make this even more explicit.

obtain is a near-optimal restricted complexity mod€he Suppose that the input spectrum is

objective of identifying such a model is worthwhile to pur-
sue from a statistical accuracy point of view, leading to the
pragmatic conclusion:

_ 2
) = g

+ @, (),

(i) Always first model as well as possible. wherep < 1is close to 1 so that the first term approximately
corresponds to a constant term in the input with amplitude

As argued in Sections 4.2 and 4.5, such models are suitable Suppose that the conditions of Proposition 3.1 hold. Order
from a statistical perspective, for replacing the true system the ;. in (34) such that; = p, then it holds

in subsequent computations of other quantities such as low o

order models or the parameters in a controller. NVar(Gy(€“))

Now, the obvious question is how does one know if one 2 ma+myp 2

A . . . . o 1-p 1- &

as obtained a near-optimal restricted complexity model? = (ﬁ + Z ﬁ)

Unfortunately, there is no precise answer to this question 8 = pl k=2 18 — Cl

as this is a model validation problem, cf. the discussion in D, (w)

Section 5.1; verifying the condition (44) on the mean-square x w2(1 — p2)/(|d® — p|2) + d,(w)

error requires the full-order model. It is also important to

realize thauncertainty descriptions based on near-optimal For » ~ 0, the above expression reducesdg/«? for p
restricted complexity models are not necessarily reliable. sufficiently close to 1, i.e. the noise to signal ratio at the
Compare with Example 4.3, computing uncertainty bounds zero frequency which is independent of the model order. It
based on that the system only has one impulse responsés also easy to see that at frequencies not in a neighborhood
coefficient will clearly not reflect the true model error. It is  of zero, the impact from the constant part of the input will
the confidence region associated with the full-order model pe small.
that is relevant. In practice one may The above derivation can be generalized to sinusoidal in-

puts. We are thus in position to suggest the advice
(i) use a very flexible model structure as benchmark for
computing confidence bounds and mean-square error. (jii) select the input such that the model uncertainty at fre-

quency regions of interest is insensitive to the model
complexity.

We now come to the role played by the input, a subject we
have touched on in Section 5.3 and which we will now elab-

orate further on. Ideally, one should select the input such As we have indicated above (near) sinusoidal inputs are use-
that the full-orderconfidence region is as large as possjble  ful from this perspective, whereas wide band inputs such as
while still satisfying the uncertainty specifications required white noise do not possess this property.
by the applicationThis would mean a minimum of experi- When the model structure is pre-specified one can notice
mentation on the system and that the simplest possible (fromthat broad-band excitation can be difficult to handle as it
the point of view of the application) model would be near- then might not exist a near-optimal restricted complexity
optimal and useful for the application. model within the pre-specified structure which may render
In practice, using a very flexible model in lieu of the true the error quantification difficult.
system, as suggested in (ii), would imply a concern whether  Equipped with (i)—(iii), which can be viewed as generally
the associated confidence bounds grow so large that theyapplicable pragmatic guidelines, we are now finally in posi-
become useless. To examine this issue further, let us returnion to discuss the control application from a system identi-
to Example 4.3 and notice that the accuracy of the static fication perspective. We will continue to use (or abuse) the
gain estimate isndependenbf the model order! Hence,  concept of a full-order model as it is useful as benchmark
in this example, the model builder does not have to worry for other methods and as there exists practical implementa-

at all about that the model estimate will be too uncertain tions in terms of near-optimal restricted complexity models.
should it turn out that the true system order was higher than

expected® The reason for this lies in the choice of input
signal which is concentrated to one frequency only. This 7 | inks between control and identification
indicates that (near) sinusoidal inputs may help limit the

variance uncertainty for high-order models. This was also |, this section we will discuss how control and identifica-

tion interact. In Section 7.1 we give a brief review of robust
3The attentive reader will notice that the argument assumes that the C?O.I’ltl’(')l. In Section 7'?’ the main Issues in relation to Iden',
observation interval is long enough that the complete step-response hadlification are summarized. These issues are then treated in
been observed. subsequent sections.
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w(t)
u(t)

|

y(t)

Fig. 9. Closed-loop system.

Fig. 10. Robust control configuration.

7.1. Robust control

Fig. 9illustrates a multivariable feedback configuration
where the controlle€ and the true syster@, are LTI. The
closed-loop system equations are

G,

( >= [ ; ] $1(Go, O)[C 1]<;)
ﬁM(Go,C)@),

whereS;(G,, C)2(I + CG,) L is the achieved input sen-
sitivity function. Above,r andw are known external exci-
tations. The (1,1)-block o#1 (G, C) is the complementary
sensitivity function

y
u

(47)

T(Go,C)= (I + G,C)"1G,C.

The closed-loop system Fig. 9is internally stable if and
only if all four closed-loop transfer functions ™ (G,, C)
are inA .

Extracting all uncertain elements of the true systém
results in the configuration ifig. 10 where 4 represents
the uncertain elements. Scaling functions have been intro-
duced in the bloclP so that4 is normalized in some way.
The performance is measured by some induced norm from
the external inputp (which may consist off and w in
Fig. 9 and/or other signals of interest) to the sigrallso
here scalings are introduced so that the desired performanc
is that the gain fronp to zis less than, e.g., 1. The general-
ized plantP thus consists of a nominal mod@élas well as
robust stability and performance weightings. The objective
is to design the controlle€ such that the closed-loop is sta-
ble and the performance criterion is satisfied for all uncer-
tainty blocks4 of some pre-specified structure. We refer to
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Skogestad and Postlethwaite (19%6)d Zhou, Doyle, and
Glover (1996)for comprehensive treatments of the robust
control problem.

7.1.1. Model sets in robust control
The, perhaps, most common uncertainty description in
robust control is multiplicative uncertainty

Go,=GU +W;4), (48)

where4 is unstructured, i.e. a full complex matrix, satisfying
4]l <1, andW; is a frequency weighting.

Model uncertainty can also be modeled as perturbations
of the coprime factorsX andY in a normalized coprime
factorization Zhou et al., 1995G = X~1Y of a nominal
modelG:

- } |
oo

Another useful measure is thegap metric introduced in
Vinnicombe (1993)

Ay

o (49)

{(x + 4x) 7N + 4y) : H

0v(G1, G2) _ )
max k(G1(€“), G2(e?)) if W(G1,G2) =0
= W : (50)
1 otherwise

wherek is the chordal-distance
K(G1(€"), G2(€?)) _
_ |G1(€%) — G2(e)]
V111612 {1+ [Ga(89))2
and where

(51)

W(G1, G2) = wno(1+ G1G2) + n(G2) — (G1).

Abovewno(G) denotes the winding number about the origin
of G(z) asztraces the unit circle, avoiding unit circle poles

and zeros by indentation into the exterior of the unit disc.
Furthermoren(G) (i7(G)) denotes the number of poles in

the complement of the closed (open) unit disc.

7.1.2. Analyzing robustness

The robust stability problem entails checking whether the
feedback configuration ifrig. 10is stable for all allowed
perturbations4 for a given controllerC. Similarly, the ro-
bust performance problem entails checking that some perfor-
mance criterion is satisfied for all allowable perturbations.
The computational complexity of checking these conditions
depends very much on the class of perturbations.

For the unstructured case, i.e. whpt| o < 1 is the only
condition on4, robust stability can be easily checked by
computing the# -norm of a certain transfer function. Con-

Sider, e.g., the case of multiplicative input uncertainty (48).

It is easy to show that
51(Go, C) = I + A(G,, G, T (G, CNI181(G.C)  (52)
where

A(Go, G, T1) =T1GHG, — G) (53)
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is the input relative erroG~1(G, — G) weighted by the Stability is guaranteed only bg ¢ >¢ (Glover & McFar-
complementary sensitivity function seen at the input of the lane, 1989

system?; =1 — S;. Hence, if the nominal desigsy (G, C) The maximum stability margin for a model with normal-
is stable, a small gain argument gives that robust stability is ized coprime factorizatios = X 1Y is given by Glover
guaranteed if & McFarlane, 1989
A(Go, G, T1 (G, O)) oo <1 54
14( 1( Nloo (54) bo2max b c = |1 H; ’
H

whenGCandG,C have the same number of unstable poles.

Robust performance is harder to verify and the structured yhere || - || ; denotes the Hankel norm (see, eZiou et

singular valueu (Zhou et al., 199fhas to be computed for 3. 199¢. Thusb¢ gives an upper bound on the maximum
non-conservative results. For unstructured uncertainty, this allowable normalized coprime uncertainty.

is still a convex optimization problem. It can be shown that fabg ¢ > 0,
Simple sufficient conditions for robust performance exist ’
as well. We illustrate this for multiplicative input uncertainty ;. . — min x (G(e'“’), - ) )
(48). Suppose that it is desired that ' o C(e?)
IW,S1(Go, Olllo <1, ¥Go = G(I + W, 4) (55) '(I'lhgeg?t;)llowmg result was first presented WMinnicombe
with || 4]l < 1 and wherd¥,, is a scalar weighting function.
From (52) it follows that Proposition 7.1. Let the model set be a ball in thegap
_ metric (50):
G(WpSI (001 C)) s <
<GW,S1(G, CYa((I + A(Go, G, T1(G, CH)™) (Go: 0(G, G <)
a(W,S81(G, C)) where G is an arbitrary nominal model. Then it holds that
S o(I + A(G., G, T;(G, C))) a controller C stabilizes all systems in this set if and only if
F(W,S1(G, C)) be.c > p-
1-3(4(G., G, T1(G, ©))) The following result also holds/{nnicombe, 1993

Hence, robust performance in the sense (55) is guaranteed if N ) )
Proposition 7.2. For a given nominal model G and system

F(W,S1(G, 0) +3(A(Go, G, T1(G,C))) <1, Yo  (56) G, it holds thatG, is stabilized by all controllers in the set

which, using (48), results in the condition (€ bg.c>pyitand only ifoy(G, Go) < .

(W, S;(G.C)) +5(T; (G, C)W)) <1 Yoo (57) Thev-gap metric is the only metric for which Propositions
r ' ’ ' 7.1 and 7.2 both hold.

Remark 1. Condition (57) is satisfied if robust stability (54)  Robust stability for real parametric uncertainty is treated

and nominal performance(W,s; (G, C)) <1 both hold in Rantzer and Megretski (1994) convex parametrization

with sufficient margin Korari & Zafiriou, 1989; Skogestad of all controllers that stabilize the system for all possible
& Postlethwaite, 1996 Not surprisingly, one may arrive at parameter combinations is provided when the uncertain real

the same condition by considering the performance degradaparametgrs appear linearly in the closed-loop characteristic
tion from the nominal design. The triangle inequality gives POlynomial.

a(W,S81(Go, €)) 7.1.3. Synthesizing robust controllers
<a(W,S81(G, C) + (W, (S1(Go, C) — 51(G, ©))) For general structures of the uncertainty, robust control
) design amounts to minimizing the structured singular value
which leads to (57). of a certain transfer matrix with respect to the controller.

) . ) There are no generally applicable algorithms for sueh
Remark 2. For SISO (single-input/single-output) systems, gynthesigroblems; for complex perturbations, so callzi¢-

(57) is equivalent to (55) since for SISO systems the left- jiarations Bkogestad & Postlethwaite, 19961ay be used
hand side of (56) is the structured singular value for robust to, at least, decreage
performance. In Section 7.1.2 it was pointed out that the robust perfor-

- ] mance condition (55) could be expressed as (57). The lat-
Robust stability for the set (49) can be checked using the ey condition is closely related to the mixed sensitivi§s

generalized stability margin condition
_IM(G, 0)|13L if M is stable W,S(G,C)
be.c = {0 otherwise (58) WiT(G,O) | <1
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where S(G,C) =1 — T(G, C) is the sensitivity function.
Thus,# «, control design can be used to approximately opti-
mize robust performance in this cagkfgestad & Postleth-
waite, 1996.

H ~ loop-shaping Glover & McFarlane, 1989 com-
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7.2. ldentification and control

In the preceeding section we have tried to give a flavour
of modern robust control theory. We will now turn to the
problem of using models obtained from system identifica-

bines classical loop-shaping ideas with modern robust tion in robust control design. An immediate insight is the

control. First pre- and post-compensatd¥s and W, are
added to the system to shape the loop g&ipG W1 of the
nominal system in a desired manner. Then a contr@ler

following:
The set of unfalsified models delivered by system identifi-
cation generally corresponds to very structured uncertainty

designed such that the stability margin (58) of the shaped descriptions from the point of view of robust control.

systemW,G W is sufficiently large. As discussed in Sec-
tion 7.1.2, this guarantees robust stability with respect to

perturbations in the coprime factors of the shaped system.

It also means that stability is guaranteed for all systéims
which are such that,(WoG W1, WoG,W1) < bw,cw,,c, Cf.
Section 7.1.2.

A simple and very instructive design method is internal
model control (IMC) Morari & Zafiriou, 1989. The con-
troller C is parametrized in terms of the nominal mo¢zl|
asC = Q( — GQ) whereQ is a stable transfer function.
A two-step procedure is employed where in the first step

For example ellipsoidal sets in the parameter domain such
as (23), do not readily fit into any of the model set descrip-
tions in Section 7.1.1. As indicated in Section 7.1.3, this in
general means that the robust control design problem be-
comes very difficult. In fact, it is often highly non-trivial to
even analyse the robustness properties for a given controller.
In Section 7.3 we report on some recent progress in robust-
ness analysis tailored for ellipsoidal model sets of the type
(23). Awaiting further development in the areas of robust-
ness analysis and control synthesis for general model sets,
an alternative approach has been to outerbound the set of

Q is determined so as to meet some nominal performanceunfalsified models in a way that is congruent with existing

specification, e.g.|W2S5(G, C)W1|leo <1. In the second
step, Q is augmented with a “de-tuning” filteF giving

a new ‘Q’ equal to QF. The filter F is selected so as to
ensure robust stability. For multiplicative input uncertainty
(48), the robust stability condition (54) can be expressed
as||QF (G, — G)|leo <1 sinceT; (G, C) = QFG in this
case.

Model reference control is closely related to IMC. Here
the target is to design the controll€rsuch that a particu-
lar sensitivity function is obtained, at least nominally. For
example, the nominal design may be such that

I (G, C(G)=Ta

for some desired complementary sensitivity functitn
Solving for C gives
CG)=G"Yu-Tp~ 11y, (59)
Naturally, non-minimum phase zeros @G are not allowed

to be canceled in this design. Notice, that with this design it
is possible to parametrize the modegldirectly in terms of
the optimal controllecC:

GC)=(-Tytryc™t. (60)

robust control theory. Naturally, it is desired to introduce as
little conservatism as possible in this procedure, as well as
keeping the complexity of the bound to the minimum. In
Section 7.4 we discuss some results in this direction.

In Section 7.5 we review some control design methods
that have been employed in conjuction with identified model
sets.

Characteristic to existing robust control methods is
that the uncertainty specifications are assumed to be pre-
specified. When the identification part of the problem is
taken into account, an additional freedom in the problem
formulation is unleashed in that the experiment design
can be used to influence the uncertainty set. Hence, for
given experimental constraints there are experimental con-
ditions for which the resulting uncertainty set is such that
the robust performance specifications cannot be improved
upon, i.e. the uncertainty set is optimally shaped (for robust
performance). The complexity of modern robust control
algorithms as well as system identification has (so far)
prohibited explicit solutions to such problems. A further
complicating factor is that industrial practice motivate the
use of restricted complexity models as well as restricted
complexity controllers. The non-transparency of modern
robust control algorithms, induced by their complexity, has
forced deliberations on these topics to rely on simplified
arguments and in Section 7.6 we will discuss some insights

There is thus a one-to-one relationship between models andhat can be obtained.

optimal controllers. The parametrization (60) is known in
adaptive control as direct parametrization.

A synthesis procedure for real parametric uncertainty is
presented inGhulchak and Rantzer (2002t builds on
Rantzer and Megretski (1994hd produces, via convex op-
timization, a robustly stabilizing controller which is arbitrar-
ily close to the optimal controller.

7.3. Robustness analysis for identified models

A simple expression for the “real” stability margin is de-
rived in (Rantzer, 199 Based on this result, robust stabil-
ity for identified ARX-models is considered iKosut and

Anserson (1994)see alsdRaynaud (1993)



414 H. Hjalmarsson / Automatica 41 (2005) 393-438

In a very interesting series of papeBofnbois et al., domain, taking undermodelling explicitly into account, for
2000h Bombois, Gevers, Scorletti, & Anderson, 2001 the instrumental variable method are developedakvoort
2001, summarized irGevers, Bombois, Codrons, Scorletti, and Van den Hof (1997)
and Anderson (2003)Gevers, Bombois and co-workers A recent contribution where frequency domain bounds
have developed analysis tools for the set of unfalsified for a set-memberhip method are derivedMilanese and
models obtained in prediction error identification, i.e. (23). Taragna (2002)Here prior assumptions on the decay rate of
Also building uponRantzer (1992)given a controllelC, a the impulse response coefficients are used to determine the
computable, necessary and sufficient condition for stability grid size of frequency points so that intersample variation
for all models in (23) is provided. It is also shown that the can be neglected.
largest chordal distance (51) between any model in (23) For standard#’ o, methods to be applicable, the uncer-
and a nominal modeB can be computed by convex opti- tainty bound should be the magnitude of a rational transfer
mization. Hence, by frequency gridding, the largegtap function. A method that produces such bounds is presented
can be computed approximately. Referring to Proposition in Scheid, Bayard, and Yam (1991)

7.2, this in turn means that it is possible to characterize the

largest ball (in thev-gap metric) of controllers which are 75 Control algorithms using identified model sets
guaranteed to stabilize all systems in (23). It is also shown

that for the performance measura (W2M(G., C)W1) In this section we will give some examples of control
(recall thatM is the closed loop transfer function defined ggorithms that have been developed specifically to cope

in (47)), where the frequency weighting®; and W2 are  with model sets produced by identification algorithms.
block-diagonal, it is possible to compute the worst case

performance over the set (23) via convex optimization.
7.5.1. Ellipsoidal model sets
7.4. Outerbounding the set of unfalsified models The problem of minimizing the maximum linear quadratic
regulator (LQR) cost in a model set described by ellipsoidal

Robust stability is the issue iDouma, Van den Hof, and  parametric uncertainty, such as (23), is studieldan, Boyd,
Bosgra (2003) Consider a ball¥ of systems in the gap  Kosut, and Franklin (1991)t is shown that the solution is
metric Zames & El-Sakkary, 199@nd a corresponding set  the LQR corresponding to a “worst-case” plant in the model
% of controllers characterized as being the largest ball in set. A heuristic algorithm for computing the worst-case plant
the gap metric (centered around some nominal controller) is proposed.
which is such that all controllers in this ball stabilize all In Raynaud, Pronzato, and Walter (199%% design spec-
systems in?. It is then shown that there exists a pair of ification is that the closed loop poles should be inside a disc
sets, one which consists of systems and one which consistswith a pre-specified radiup < 1. The objective is to find
of controllers, which are characterized by the double Youla the controller that maximizes the volume of a model set of
parametrization and which are such that the set of systemsthe type (23) (i.e. the constapf(n) in (23)) such that the
includes.¥ and the set of controllers include those%h closed-loop poles satisfy the design objective for all mod-
Hence, with respect to robust stability, the double Youla els in this set. It is remarked that, followirigantzer and
parametrization is less conservative than the gap metric forMegretski (1994)the problem can be recast as an infinite
representing model sets. By similar arguments it is shown dimensional convex problem. Instead a lower bound for the
that the double Youla parametrization is less conservative maximum volume, amenable to standa#f,, robust con-
than using the-gap and the1-gap (seeBongers, 199%or trol, is used. An alternative path might be to use the method
a definition) to characterize model sets. in Ghulchak and Rantzer (2008)hich addresses the prob-

In Van den Hof (1998)t is pointed out that choosing lem formulated inRRantzer and Megretski (1994)
a model structure such that the model error is affine in  There is at present no control design method that accounts
the performance criterion implies considerable simplifica- for both robust stability and robust performance when the
tions. When the performance is measured by some frequencymodel set is defined by (23). For SISO systems it is suggested
weighted element o/ (G, C), itis pointed out that the dual  in Bombois, Scorletti, Anderson, Gevers, and Van den Hof
Youla parametrization is one such parametrization. Further (2002)to first determine the set of controllers for which the
insights on the implications of outerbounding are reported nominal performance is somewhat better than the desired
in Douma and Van den Hof (2003) robust performance. This is a standax,, problem and

Pointwise bounds in the frequency domain are derived in the set can be easily characterized. It is then tested whether
Wahlberg and Ljung (1992)sing a set-membership setting. all controllers in this set stabilize all systems in the model
The effects of unknown impulse response coefficients, ini- set. A similar test for the performance criterion is presented.
tal condition and an unknown-but-bounded disturbance are The robust stability test boils down to the computation of
taken into account. Another contribution to the frequency the structured singular value of a certain matrix. If these two
domain bounding of ellipsoidal parameter set®avilbiss tests are passed, any controller in the set of controllers can
and Yurkovich (1998)Confidence bounds in the frequency be used.
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7.5.2. Model sets from set-membership identification suppressing for notational convenience the dependence of
IMC is employed in Malan, Milanese, Regruto, and V on G,. Various norms ofV (G, C(G)) can be used to
Taragna (2001)The Q part of the controller, cf. Section quantify the performance degradation when the designed
7.1.3, is obtained by solving controller is applied to the true system, as compared to the

nominal design.

It is also of interest to consider performance degrada-
tion relative to the overall optimal desig (G,, C(G,))
subject to the robust stability conditidfOW 4lloc <1 (Wa (which would result if perfect knowledge @, was avail-
is an upper bound on the additive model error. This is a able in the control design). This can be measured by
standard# ', problem provided, is the magnitude of a  norms ofJ(G., C(G,), Go, C(G))=W1(M(G,, C(Go)) —

0 =arg min|(1— QG)W||s
QeH

stable rational transfer function. M(G,, C(G)))W>. The average squared 2-norm of this
quantity has, e.g., been used in input design which we will
7.6. Linking identification and robust control discuss in Section 11.

Notice that whenM (G, C(G)) = M is independent o6,

In Remark 1 in Section 7.1.2 we saw that robustness issueghen J (G, C(G,), G,, C(G)) = —J(G,, C(G), G, C(G))
may be analyzed by considering the difference between theso that the performance degradation measurgs, C(G))
closed-loop transfer function of the nominal design and the and J (G,, C(G.,), G., C(G)) coincide.
true one. This has been a fruitful starting point for examin-  Returning toV, notice that it holds that (recall (53))
ing the links between identification and control. In particu-
lar, this type of analysis has been employed to examine whatV (G, C)
constitutes a good nominal mod&dhrama, 1992; Lee, An-

derson, Mareels, & Kosut, 199%ee, Anderson, Kosut, & _ [wncl} (I + 1)"Y48,(G, C) [wi2C  waal],
Mareels, 1993; Zang, Bitmead, & Gevers, 19%&strom, —wa1!
1993. But it can also be used to analyze how the model un- (64)

certainty and the experimental conditions influence the per-
formance. Building orHjalmarsson and Jansson (2008% where 4 = A(G,, G, T;(G, C)). From this expression we

shall pursue such an analysis in this section. can re-derive the robust stability result (54) and we conclude
Let us introduce the weighted difference between the once more that the size of the weighted input relative error
closed-loop system consisting of the true systémcon- 4 is intimately tied to robust stability.
trolled by the controlleiC,, and the designed closed-loop  Regarding robust performance, we can overbound the gain
system using the nominal mod&lwith some controlleC of V in the following way:
A
TG €0 GO 3(V(G.C))
(wgl o ,) (M(Go, Co) = M(G, C)) <G(4(Go. G. T(G. C))
x 5((I + 4(G,, G, T(G,C)) ™)
o« w12l 0 5
0 woal w [P 2
2 21
= Wi(M(Go, Co) — M(G, C))Wa, (61) a4(C)
wherew;;, i, j =1, 2 are scalar frequency weights. As this > \/w%ZEZ(SI(G, C)C) + w%ZEZ(SI(G, 0)). (65)

expression may seem cumbersome, the reader is recom-

mended to restrict attention to the case For SISO systems the bound is tight. It is also possible to

J(Go, Co, G, C) =Go81(Go, Co)Co — GS1(G, CO)C derive a similar expression that is based on the weighted
=T(G,,C,) —T(G, ), (62) output relative errovtp = (G, — G)G 1T (G, 0), see, e.g.
Morari and Zafiriou (1989)

Studying (65), we see that the first two factors depend
only on the weighted relative model errdrwhile the last
two factors depend solely on the nominal design. We shall
now discuss each factor separately:

which corresponds to the choigg1=w12=1, w21=w22=0.
Much of the analysis in the identification for control litera-
ture has focused on thi4, 1)-block. However, performance
robustness is equally important for the other transfer func-
tions.

It is natural to consider the difference between the nomi-
nal designM (G, C(G)), which usually has some desirable
properties, and the corresponding closed-loop transfer func-
tion when the designed controll€N(G) is applied to the true
system, i.eM(G,, C(G)). For this reason we introduce

e The first factor is the gain of the weighted relative error.
Hence, the relative accuracy of the model, as compared to
the designed complementary sensitivity function, can be
used to control robust performance

e As we have pointed out above, the second factor
V(G,C)2J (G, C,G,C) (63) is related to stability. We can bound this term
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according to 10" . :
(I + A(G,, G, T(G,C))™ Y
1
< — . B
1-6(4(Gs, G, ) 10

The closer to 1 the gain af, the poorer robustness margin

and the poorer performance. Notice that by combining the
above inequality with the inequality (65), a generalization
of the robust performance condition (57) is obtained. 102 ot "

e The third factor\/wfl/gz(C) + w%l becomes large at w
frequencies where the controller has a low gain direction. Fig. 11. Thick solid line: estimated modély. Thin dashed line: desired
This can occur, e.g., if the system is ill-conditioned with complementary sensitivity fu‘n_ct_ioﬂ' for ‘design 1._ Lower d_otted line:
large differences in gain in different directions or in the (_ies.lred cpmplementary sensitivity functlb’nfgr design 2. Thick dasheq

. . . line: designed control effor? /G, for design 1. Upper dotted line:
rare event that the designed closed-loop bandwidth is gesigned control efforr/G y for design 2.
lower than the bandwidth of the nominal model.

e The first term inside the square root in the fourth factor, could call the designed control effort. Let SENPR denote the
ie. wfzaz(SI(G, C)C), is related to the gain from the signal energy density to noise power density rati®, /@, .
reference to the inputu in Fig. 9. It is thus a measure of ~ Then (66) implies roughly that SENPR has to be at least an
the control effort. Hence, this term is large at frequencies order of magnitude larger than the squared designed control
where the bandwidth of the nominal design significantly effort in order to guarantee robust performance.
exceeds the bandwidth of the nominal model. In order to get some insight in what this implies, notice
The second term)SZEZ(SI(G, C)) isthe gain of the nom-  that in the passband of the designed complementary sensi-
inal input sensitivity. This term may become large around tivity function, |7/G | ~ |1/G y|. Typically G,, whichG y
the designed bandwidth if, e.g., the designed bandwidth tries to approximate, is of low-pass character with gain larger
exceeds the limitations imposed by non-minimum phase than one at low frequencies, and hence the designed control
zeros present in the system. effort will be (significantly) less than one for frequencies up

. to when the system’s own gain drops below 1, i.e. the open
Notice that4 is involved both in the robust stability and  loop cross-over frequency. Hence, in this frequency range
the robust performance conditions. The magnitude of this the model uncertainty may be allowed large while still hav-
factor depends on both thguality of the model Gand the ing a small||4]|s. This is the forgiving nature of feedback
control specificationgrepresented by; (G, €)). Itis around giving the model builder some slack. Above this frequency

A where the interplay between system identification and con- region the magnitude ¢f' /G | will increase until the band-

trol is staged and below we will illustrate some of the trade- width of T is reached where it will start to decreaseTif

offs that it induces by considering the problem of making rolls-off faster thanG . Thus it is in this frequency region

|4] <1. For simplicity, we will consider the SISO-case only. where an accurate model will be required. More precisely,

Let Gy be an identified model and 16(G y) be a controller ~ for a system that rolls off like A", a SENPR of the order
designed based on this nominal model (and possibly also itsat least®(w?") is required in this frequency band. This in-
confidence region). Since, input and output sensitivities are dicates that increasing the closed-loop bandwidth becomes
the same for SISO systems we shall drop the subskiipt increasingly expensive with respect to experimentation be-
quantities such a%;, etc. yond the open loop system’s own bandwidth. This is illus-
trated inFig. 11where the designed control effort is shown
Trade-off 1: Performance specifications versus experimen- for two different choices of designed bandwidth (designs 1
tation effort and 2). As the bandwidth is increased above the bandwidth
of the estimated model, the designed control effort increases

Suppose that the set of unfalsified models is given by (36). significantly implying in turn a drastic increase in the mini-
Then mum SENPR which is proportional to the square of the de-

10t}

A A signed control effort as mentioned above. We shall discuss
I 4]0 < SUP T(GN’AC(GN))‘ experiment design further in Section 11.
10 Gy Another important conclusion is that (66) involves quanti-
ties which a priori are unknown. Hence, it may be beneficial
2 D, to update the experiment design as more information about
X\ Xa(m)n N N-®, (66) the system is obtained. This leadsadaptive experiment
designwhich we shall discuss in Section 11.3.
with probabilityo.. HereT /G y is the designed transfer func- In summary, (66) captures the trade-off between the

tion from the reference to the inputu in Fig. 9, which we input spectrum and the performance specifications. The
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importance of adapting the performance specifications to where 4 is given by (53) with7; = T (which holds for

the system uncertainty is the leading principle in the ‘wind-
surfer approach’, see e.gee et al. (1995)Here the per-
formance is gradually increased along with improved confi-
dence in the model. See alSehrama (1992)furthermore
seeCadic, Weiland, and Polderman (2008} a recent dis-
cussion on the importance of this issue.

Trade-off 2: Performance specifications versus model
complexity

Suppose that in order to limit the complexity of the con-
troller, a low order modets;, is to be used. From the separa-
tion principle in Section 4.2 we have that the optimal model
is obtained by first estimating a full-order model,; using
ML estimation and then solving

A . Gur — G
G, = arg minsup | ———~2
G @] Gio

T(Gio, C(Gio))|-

The total errorGy, — G, can be assessed by also comput-
ing the variance for5,,. However, already the minimum of

SISO systems). We shall occasionally gge denote some
nominal performance measure, e.g. designed bandwidth.
We will begin this exposé in Section 8.1 by elaborating on
how to identify restricted complexity models in an asymp-
totically efficient way. We will then in subsequent sections
review different approaches that have appeared in the liter-
ature. In Section 8.9 stability aspects for such performance
based methods will be considered. From this discussion we
conclude that it is of interest to consider methods which
make the weighted relative error (53) small and in Section
8.10 we discuss how to identify near-optimal restricted com-
plexity models with this property. Finally, in Section 8.11
we discuss preferential identification, an alternative way of
connecting the identification criterion with robust control.

8.1. Asymptotically efficient identification

From Section 4.2 it follows that it is optimal, with re-
spect to the asymptotic statistical accuracy, to first identify a
full-order model using an asymptotically efficient estimator,
and then reduce the complexity according to the following

the expression above gives useful information. For a given procedure:

bound on|4|, a lower bound on the complexity @, is
obtained. Conversely, given the complexity@®f,, an upper
bound on achievable bandwidth fris obtained.

8. Direct identification of restricted complexity models
for control: LTI systems

Since the order of the controller typically depends on
the order of the model, it is often desirable to restrict the
complexity of the model. Thus there is a need to identify
restricted complexity models that are suitable for control.

Let G(0) represent a full-order model, i.80° s.t. G(0°)=

G,, and Iet@ML denote the corresponding ML-estimate. Let
G (n) represent a restricted complexity model and define

J 0,7, )2I(G(0), C(G, ), G, C(GM), ),

where J(G1,C1, G2,C2) has been defined in (61)
(or the simpler (62)). Then, také as the minimizer
of ||f(@ML,11, M| with respect ton. The variance of
I1J(6°, 7, 7)| may be estimated numerically using Gauss’
approximation formulal§ung, 1999h and implicit differ-
entiation of J (0, n,7). Hence, for given data, the perfor-

This is the theme of this section. In one line of research Mance specificatiory may be adjusted so that achieved
the objective has been to develop identification methods @nd designed performance are guaranteed to be sufficiently

which directly identify low order models suitable for con-
trol design. A minimum requirement in this context has

close as well as to ensure robust stability.

been methods that work for large data sets. This means tha8.2. High-order modeling and model reduction

the focus has been on the bias efiGk(€“) — G(&®, 6*)]

and variance aspects have to a large extent been neglected, It may be useful both from practical and computational

cf. Sections 8.3-8.7.
In order to facilitate the comparison of different methods

points of view to first estimate a high-order model and
then perform model reduction. The method ASYM, Zéel

only SISO systems will be considered. We define as formal (1998, 2001)is a fully integrated method for identification

objective to minimize the performance degradation as com-

for control based on this approach and, hence, very close

pared to the nominal control design. This means minimizing in spirit to the use of the separation principle discussed in

(recall (63))|V (G, C(G))|l, where]| - || is any norm, with
respect toG, in other words the identification is linked to

the control design via a performance degradation criterion.

Section 8.1. The input design is based on high-order op-
timal input design; see Section 11.1. A two step approach
is used with a high-order ARX-model estimated in the first

For ease of comparison, the simple case (62) is consideredstep, the motivation being its computational simplicity and

throughout Section 8. Notice th&tG, C) then simplifies to
V(G,C)=T(G,,C)—-T(G,C)=S5(G,C) - S(G,,(C)

=1+ 4(Go. G. T(G. 0))) ' 4(G.. G, T (G, C))

x S(G, 0), (67)

that the high-order theory is applicable, cf. Section 3.2 and
(32). Model reduction is performed using the asymptotic
ML method Vahlberg, 1989 which means minimizing a
frequency weighted?; criterion where the weighting cor-
responds to the inverse of an estimate of the variance of
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the estimated high-order frequency function. The model re-
duction step is thus asymptotically efficient as the sample
sizeandthe model order tends to infinity. Model order se-

lection is also based on the high order variance expression.

To determine the unfalsified set of controllers, (36) is used
with #, y(w) =m (=the model order) which follows from
(32). The method was developed in the early 1990's and
it has been successfully applied to numerous multivariable
processes in process industry.

High-order ARX-modeling is also advocated Rivera
and Jun (2000)

8.3. Direct restricted complexity identification

It may not be convenient to identify a full-order model
and around 1990 several ideas of how to directly iden-
tify a nominal modelG which approximately minimizes
IV (G, C(G))|2 appeared. As we will outline below, the ba-
sic idea is to choose thiesign variable the identification

ca 41 (2005) 393-438

A simpler cost function is obtained by linearizing (62)
with respect toG,

J(G,, Co, G, C)
£J(G,, C,, G, C).

This gives the approximation

V(G,C)2J(G,,C,G,C)= (G, — G)CS*(G,C)  (71)
to V(G, C) (63) and instead of minimizinfjV (G, C(G))||2,
IV (G, C(G))|l2 could be minimized (off V(G(C), C)||» if
the direct parametrization (60) is used).

Comparing the#>-norm of (71) with the open loop bias
expression (26), we see that open loop identification with
the noise model
1/2

H=®,/°(S%G, C(G)C(G)) L (72)

method such that the asymptotic bias expression, e.g. (26),

approximates theZ>-norm of the error (67).
The quantityV (G, C) in (67) can also be expressed as

V(G,C)=T(G,,C)—T(G,C)
=A(G., G, T(G, C))S(G,, C)

=S(G, C)(Go — G)CS(Go, C). (68)

Hence,

Y
VG, C)||%=f 1Gs = GI?|CS(Go, O)PIS(G, O)[? dw.
-

Comparing this expression with the closed-loop bias expres-
sion (27), we see thatV (G, C)||§ corresponds to the first
term in the closed-loop bias expression (27) if the noise
model is taken as

1/2

H=o;°571G, C). (69)

Hence, the model that minimizéd/ (G, C)||§ with respect
to G will be obtained asymptotically when the system is
noise free if the identification is performed in closed-loop
with the controllerC using the noise model (69). We will
discuss this approach further in Section 8.5.

Before we proceed, observe that the above derivation can
also be done in the time domain. Letandy, denote the
input and output, respectively, of the closed-loop system in
Fig. 9 with w = 0 and the controlleC in the loop. The
manipulations in (68) correspond in the time domain to

y —T(G,C)r =(S(G,C)+T(G,C))y — T(G,C)r
=8(G,C)y —=GCr —y))
= S(G, C)(y — Gu). (70)

The expression (70) is the prediction error (16) when data
are collected in closed-loop withas the controller anél =
$~1(G, C) as noise model. The only difference compared
to (69) is due to that the spectrum of (70) is weighted with
the reference spectrum which is not the case in (68).

corresponds to minimizing/ (G, C(G)) under noise free
conditions. We will discuss this approach in Section 8.6.

Remark 1. Comparing (71) with (67), we see that the sta-
bility guaranteeing ternil + 4) ! is not present in the ap-
proximationV (G, C). Furthermore, comparing with the dis-
cussion on conditions ol | in Section 7.6, we see that there
is less emphasis on makirig| small at low frequencies.
Hence, there is a possibility thad| > 1 at low frequencies
when (71) is used, with a potential risk for destabilization.

In Sections 8.4-8.7 we will elaborate on how the expres-
sions above have been used in the literature.

8.4. Model and controller reduction

Expression (71) was, perhaps, first used for model re-
duction purposes. Given a full-order mod&|, and a de-
sired complementary sensitivity function, the problem of
finding a control relevant reduced order model such that
IS(G,, C(G))| is as small as possible was examined in
Rivera and Morari (1987)Through the use of a triangle in-
equality for the sensitivity function, the objective was simpli-
fied into minimizing the norm off (G, C(G), G, C(G)) =
V (G, C(G)) with respect tdG, which in turn was approxi-
mated by the norm o¥ (G, C(G)).

In Rivera and Morari (1987}he function|V (G, C(G))||
is minimized with respect t& numerically under the as-
sumption that

IS(G, C(G)T (G, C(G))]

is independent of5, cf. IMC and model reference control
(see Section 7.1.3). From this we see that a smedd-

tive model error is achieved around the designed bandwidth
where neither o (G, C(G)) or T(G, C(G)) are small.
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The problem of controller reduction was also studied in
Rivera and Morari (1987see alsé\nderson and Liu (1989)
Given the high order controllat,, the objective is to deter-
mine C such that some norm of
U(G,, C)2J(Go, Co, Go, €)

=T(G., Co) —T(G,, C)
is small. Linearizing with respect t0 gives

C,—C

(73)

T(Go, Co)S(Go, Co)2U (Go, C).
(74)

U(G., C) =

o

A similar procedure as for the model reduction problem is
now used.

In fact these model reduction and controller reduction
problems are dual to each other: With a direct parametriza-
tion of G in terms of the controlle€ according to

1 T(G., Co)

T C1-T(G..C) (75)

then

U(G,,C)=-V(G(C), (). (76)

Hence, the controller reduction problem milU (G,, C)]||
can be seen as the model reduction problenmgiin(G, C)||
whereG is parametrized in terms & according to (75).

A variation of the above controller reduction idea is pre-
sented irLandau, Karimi, and Constantinescu (20(Hgre,
no Taylor approximation is introduced. For the optimiza-
tion, arecursive algorithm is employed which uses simulated
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Gunnarsson, & Gevers, 1995The iterations above corre-
spond to, for some given functiog(x, y), trying to mini-
mize the functionf (0) = g(0, 0) by the iterations

(1) Ox =arg miryg(0, Ox—1).
(i) Let k =k + 1 and go to Step (i)

Any convergence poinf* satisfies that the partial deriva-
tive of g with respect to the first argumentis zero, i.e.
0g(0*, 0*)/0x = 0, whereas a necessary condition for opti-
mality is 0= f/(0) =0g (0, 0)/0x +0g(0, 0)/0y. Thus con-
vergence to the optimal solution cannot in general be guar-
anteed. This problem had earlier on been noted in adaptive
control, seejung and Sodderstrom (1983\nderson et al.
(1986)andPhillips, Kosut, and Franklin (1998t has also
turned out to be difficult to establish convergence of the
above procedure. Despite these shortcomings, this type of
method has been found useful and successful applications
exist, see e.gPartanen and Bitmead (199%chrama and
Bosgra (1993)Albertos and Sala (2002n Section 8.11 we

will see that the uncertainty model unfalsification approach
allows convergent iterative methods to be developed.

The above derivation assumed noise free data. In the
case of noisy data, the bias of the direct prediction error
method cannot be tuned at the user’s will by the use of a
prefilter/noise-model. This has spurred the development of
a number of closed-loop identification methods for which
this is possible. We refer t¥an den Hof (1998)Forssell
and Ljung (1999andLandau, Karimi, and Constantinescu
(1997)for details.

8.6. Prefiltering methods

closed-loop signals. Boundedness of the closed-loop signals

of the closed loop system with the reduced order controller
is guaranteed under a certain positivity condition.

8.5. lterative methods

In Section 8.3 we have seen th@t{G, C) can be min-
imized with respect tdG using closed-loop identification
with the controllerC in the loop when the noise model (69)

In Section 8.3 we introduced the approximatisnG, C)
(71) to V (G, C) (63) and showed that under noise free con-
ditions ||V (G, C(G))|l2 can be minimized asymptotically
with prediction error identification if the noise model is cho-
sen as (72). For noisy data, the bias expression (26) is no
longer valid as the noise model (72) is not independently
parametrized o5 (Forssell & Ljung, 1999 However, this
prefiltering method is simple to use as it requires no special

is used and data are noise free. Since the objective is toexperimental conditions and can be expected to work if the

minimize V (G, C(G)) this suggests the following iterative
procedure. At iteratiotk;

(i) Identify a model Gy using the noise model (69) and
closed-loop data collected with controlléf=C (Gy_1)
in the loop.

(i) ReplaceCy with Cr+1=C(Gy) in the closed loop. Let
k =k + 1 and go to Step (i)

The methods iZang et al. (1995and Schrama (1992qre

examples of this approach. See afssirom (1993) Surveys

of this type of methods can be found@evers (1993)Van

den Hof and Schrama (199&hdAlbertos and Sala (2002)
Despite the intuitive character, the above scheme will not

converge to the minimum o¥ (G, C(G)) (Hjalmarsson,

signal-to-noise ratio is high and some care regarding the de-
signed bandwidth is exercised, see Remark 1 in Section 8.3.
The above idea is the basisRivera, Pollard, and Garcia
(1992)where, for numerical reasons, an iterative procedure
is proposed where the estimated model from iteratienl
is used in the noise model at iteratikn
In virtual reference feedback tuning (VRFTT&mpi,
Lecchini, & Savaresi, 2002data is used to optimize
the controller such that|7(G,, C) — Tyll2, where T,
is some fixed reference model, is minimized. This
means that|U(G,, C)|l2, see (73), is minimized with
T(G,, Co) = Ty. The approximatio/ (G, C), see (74), is
used and it is observed that(G,, C) can be rewritten as
(1 — T)T4(C(T; 1 Go — Go) — 1). The Zp-norm of this
expression can thus, in the limN — oo, be minimized
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by minimizing the sum of squares of where

6= 02 (L— T T4(Clrr, — y) — u) 7)) ep(0)=S(y — GOw), w= %u+y,
with respect toC for an arbitrary noise free data sg&t¥.
The signalr, = d‘ly is called the virtual reference signal.
At first glance this procedure might seem unrelated to
the prefiltering approach discussed in this section. How-
ever, the relation (76) betweeli(G,, C), used in VRFT,
and V(G, C(G)), used in the prefiltering approach, sug-
gests that there is a close connection. In fact, with the direct
parametrization (60) we see that VRFT corresponds to min-
imizing |V (G(C), C)||2, i.e. VRFT can be interpreted as a
prefiltering approach using the direct parametrization (60).
A variant of the prefiltering approach is proposed in
Holmberg, Valentinotti, and Bonvin (2000Dbata are col-
lected in closed-loop with some controll€rand from this
data set a model of the complementary sensitivity function ) S )
is estimated from which an estimaféG.. C) of the sen- Up till now we have in this section assumed that the same

sitivity function S(G., C) can be obtained. Based on (68), controIIerC(GN) is used on the true system as on the nom-
S(G, C)CS(G., C) is then used as prefilter in the identi- inal design. It is possible to obtain an achieved performance
fication. Notice that there is no guarantee either that this €/0Ser t0 the nominal performan@&Gy, C(Gy)) by re-
procedure will find the model that minimize&(G, C(G)). placing C (G y) with the confcrolle_rC which minimizes the
Based on the simplifying assumption that the model error is Verage performance deterioration

only due to noise, an attempt to take the model uncertainty E{J(G
into account in the control design is donettolmberg et

and where7 yy(z) is defined as as th@gv + M — 1) x M
lower Toeplitz matrix withz(0), ..., z(N —1),0,...0]" in
the first column. Using the Frobenius norm in (79), results in
that theZ>-norm is obtained asymptotically in (78) whereas
the 2-norm will result in that the norm in (78) is th€ .-
norm (Massoumnia & Kosut, 1994

We remark that with the cost function (79) as starting
point it is not obvious that this method actually is a two step
procedure involving a non-parametric estimate of the true
system in the first step.

8.8. Minimizing average performance degradation

0, C, Gy, C(GN))},

al. (2000) where the expectation is ovef, in the set of unfalsi-
fied models. This has been explored Goodwin, Wang,

8.7. Data dependent prefilters and Miller (1999) see alsd@soodwin, Graebe, and Salgado
(2001)

A non-parametric estimate af. is given by @,,/®,,
where @,, is a non-parametric estimate of the cross- 8.9. Stability, performance and robustness
spectrum between (seeFig. 9) andx. Now, replacing the
true G, by this estimate in (62) gives the cost function It may be tempting to conclude that since the nominal de-

. sigh M (G, C) is stable and sincgV (G, C)| (67) is mini-
7 (éyr C(G).G C(G)) H mized, the achieved closed-loop syst&G,, C) is stable.
1 In relation to (67) we note tha¥’»- or # ,-norms are suit-
S(G, C(G))C(G) able. However, the methods discussed previously in this sec-
take stability into account, i.e. the norms are$6p or £«
. (78) type. Hence, even if we, as in the case of data-dependent
It can be shown that this cost function asymptotically (in We get no information whatsoever whether the minimizing
N) converges tdJ (G., C(G), G, C(G))||=V (G, C(G))| controller stabilizes the true system or not, with one excep-
cally minimizes the desired objective, provided that the the Perfectly. One exception to this is the method endau et
spectral estimates are consistefjaimarsson & Lindquist, al. (2001)which uses signals generated by closed-loop sim-
the optimal method outlined in Section 8.1 with the non-  We will use a simple example to illustrate this using
parametric estimate replacing the asymptotically efficient the method presented @ampi et al. (2002)It should be

ur

q The truth of this, however, depends on the norm that is used.
1+ @y, /P, C(G) tion are based on frequency domain expressions that do not
D,
) ( q . - G)
Pur prefiltering, are able to generate the ideal cost function (67),
and that consequently the minimizirg also asymptoti-  tion and thatis when we can matéiGo, C) with 7'(G, C)
2007). The method can be seen as a simplified version of Ulation.

ML-estimate. stressed though, that the problem is not specific to this
The costfunction (78) can be expressed in the time domainMethod  but intrinsic to all methods which solely aim at
as minimizing ||V (G, C(G))||.

||(.7§,M(w)9.NM(r))_lf{,M (eL ()T nm()ll, (79) 4This method is chosen because of the simple calculations.
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Example 8.1.Let the true system be a pure time-delay 8.10. Control relevant near-optimal models
y(t) = u(t — 1). Suppose that a simple proportional con-
troller C = p is used on the time-delay system. Notice that  In Section 7.1.2 we saw that using a good nominal control
the closed-loop is unstable fgw| > 1. design combined with a model that makes the magnitude of
Let the desired complementary sensitivity function be the weighted relative model erraf (defined in (53)) suffi-
Ty (€?°)=1— 0+ oe1® where the parameteérwill be dis- ciently small leads to robust performance, cf. (56). Similar
cussed later. Clearl\; cannot be achieved no matter what conclusions were drawn in Section 7.6. We shall now pursue
controller is used unless= 1. this idea.
Consider now the error signal (77). It can be shown that  For a full-order model)4| is, frequency by frequency,
when the input is white noise with zero mean and unit vari- bounded by (see (66))

ance, therE[£2(z, p)] is minimized by R R
TGN, CGN | |,
———— | JxaKa N
Gy

For a near-optimal modl the bound has to be multiplied
Hence, for 0< 6 <0.1, lpoptl > 1 and the corresponding by a factor 2.
closed loop system will be unstable. Hence stability is not  Now consider the scenario that the data &8t is given
ensured when the desired closed-loop cannot be matched bynd it is required thaftd(w)| is bounded by some function.
the actual closed-loop. Then, firstly in order to have a handle on the model error
frequency by frequency, the model complexity has to be
We conclude from Example 8 that the performance speci- chosen such that the model is near-optimal. Furthermore,
fications have to benatchedo the approximating ability of  the remaining variable at the user’s disposal ighich has
the model and that to ensure stability some robust stability to be chosen sufficiently small that the condition |ah is
condition has to be included. This in turn means that it is not satisfied.
sufficient for a method to be able to tune the bias error opti-  When the input design is at the user’s disposal, there is
mally, a method also has to be able to provide bounds for the considerably more freedom for the user. For given perfor-
model error and these have to be accounted for in the controlmance specifications and with no restrictions on the model
design. complexity, (iii) in Section 6 gives that the input should be
As we saw in Section 7.6 (Trade-off 1), it becomes typi- designed such that (80) is less than one but not smaller than
cally increasingly expensive to obtain sufficient process in- necessary. This will give data that are sufficiently informa-
formation to ensure robust performance (and stability) as thetive for the given performance specifications while at the
bandwidth is increased. Hence, it is natural to gradually in- same time minimizing the modeling requirements.
crease the specified bandwidth. This was recognizée@
et al. (1993where the term “the windsurfer approach”, al- g 11. preferential identification
luding to how a windsurfer gradually improves his/hers per-

45 -1 (80)

Popt = ~65—

b,
N @,

formance, was coined. So far in this section, the objective has been to ensure
An early reference to iterative identification ambust that the identification is performed such that the difference
control isBayard, Yam, and Mettler (1992)nother contri- iy performance between the nominal design (using the iden-

bution isde Callafon and Van den Hof (1997Jhe issue of  ified model) and the actual design is small, as measured by

ensuring that the collected information guarantees improvedne functionV. When the control design minimizes an ex-

performance is not addressed (Eq. (4flCallafon &Van  pjicit criterion, it is natural to instead study the problem of

den Hof (1997), instead considerable effort is spent on how pow to identify a mode; y such that this criterion is mini-

to select uncertainty descriptions and the control design so asyjzed for the true system when the controller based;an

to_ aII(_)W compgtationally feasible solutions. Interesting ap- s ysed. This problem can be addressed using the separation

plications of this method are reportedda Callafon andVan  pyrinciple in a way similar to what was done in Section 8.1.

den Hof (2001)and Bejstrup, Niemann, Kglstad Poulsen,  However, we will not pursue this idea further but instead

and drgensen (2003) _ _ _ ~ discuss an interesting approach pioneeredrause, Stein,
Another way to cope with the robustness issue is to in- 5ng Khargonekar (1993pr adaptive control.

troduce caution in controller updates. Assuming the present A pit simplified, the idea inkrause et al. (1992§an be
controller to be stabilizing (but providing unsatisfactory g,mmarized as follows:

performance), the increment in the controller update is lim-
ited so as to ensure stability also with the new controller () yse a robust control lawassume that there is a robust
(Anderson, Bombois, Gevers, & Kulcsar, 1998; Gevers, control law C() such that when the system signals
2000; Bitmead, 2000

In Section 8.11 we will discuss a quite different approach 5Recall, see Section 4.4, that a near-optimal model is any model
based on robust control. within the confidence region of a full-order model.
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{y(@), u(t)}{\’:,o in a closed-loop experiment with this r=1,2,...,andin view of (82) it holds thal"(n, ) <7 (n,).

controller are consistent with certain modeling assump- The actual performance guarantee after the estimates have

tions parametrized by some vectp(z, is a time offset converged is thuat leastas good as if a validg had been

to allow for a transient phase where the assumptions areknown from the beginning and used for the control design.

not satisfied), then a certain closed-loop performance Clearly, a very powerful result.

T () is guaranteed for this experiment. The key issue in the approach is to ensure convergence

One example of modeling assumptions is that of the algorithm. For a generalization of (81), a dead-zone
is used in the parameter update Sokolov (1996) This

" " ensures convergence in finite time without any persistence

y(6) = ng”(t —k| <y Z lut = k)12 +c, of excitation conditions. Notice that the boungsand ¢
k=1 k=1 are not known in advance! The dead-zone implies a slight
(81) degradation of the performance guarantee. One shortcoming

of this algorithm is that the adaptation horizanis not
known in advance, so that one may have to wait a long
time until convergence and during this transient phase no

with n>m, andn = [g1, ..., gm. 7, c]". Notice that

the boundy on the unmodeled dynamics and the noise
boundc are not assumed known. Notice also ttaatd |
this is important the assumption regarding the control Performance guarantees are available.

law does not mean that the system signals have to sat- There are various ramifications of the above idea, e.qg.
isfy the modeling assumptions for any input; they just Veres and Sokolov (199&ndSokolov (2001) Furthermore,
have to be consistent with the assumptions for the ex- Veres has adapted the concept to iterative identification and

periment at hand. control (Veres, 1999; Veres & Wall, 2000; Veres, 2001

(i) Use uncertainty model unfalsificationse an identifi- ~ COmputational and complexity issues are the topidéeots,
cation method which is able to estimateon-line and ~ Messaoud, and Norton (1998hdXia and Veres (1999)
in closed-loop such that the estimate say, converges To conclude, in cont_rast to the methO(_j_s |n_Sect|on 8.5, f[he
in finite time ¢ = £, < co with the estimate;, being _robus_t_ cor_wtrol/unce_rtamty model _unfalsmcathn/_prgferent!al
consistent with{y (), u(1)}'_, . ° identification paradigm has, subject to. the _I|m|_tat|or_1§ d|§—
e cussed above, proven able to produce iterative identification
When (i) and (ii) are satisfied, it follows immediately and control methods which converge with performance gu-
that for the adaptive controllerC(y,), performance for  rantees.
{y(), u()}_, is guaranteed by (n, ).

9. Direct identification of restricted complexity models

Remark 1. Notice that the obtainegi need not correspond for control: non-linear systems

to a “true”n, i.e. it does not have to be valid for all possible
inputs to the system; from (i) it suffices that it holds for the  There is abundant practical evidence that LTI models often
particular experiment. The samg does thus not guarantee are sufficient for control design for non-linear systems. In
performance’(n, ) in a new closed-loop experiment. ltmay  this section we will discuss some related issues. We will
not even guarantee stability. limit attention to SISO systems.
From a system identification perspective it is of interest

Remark 1 points to that this is a quite different approach to know how much uncertainty robust (and adaptive) control
from what we would normally perceive as robust control. can handle. In a series of paper, partly summarize@to
This seems to be the price paid for not using a priori knowl- (2002) Guo and co-workers have explored this topic.
edge of a set to which the true system belongs.

There is considerable freedom in choosing the estimation 9.1. Performance aspects
algorithm in (ii) and this freedom can be used to achieve
the same performance guarantee as if the true system was Let us assume that the systesy in Fig. 9is non-linear
known. In preferential identification (a term coined in  and noise-free and also that= 0. Let us also assume that

Krause et al., 19920one chooses the model whipromises a linear modelG is used to design an LTI model reference

the best performancfr the controller: controller (59). We will now discuss how to find a suitable
] modelG such that the non-linear feedback system consisting
1, =arg minT (), (82)  of the non-linear system and the linear controller defined
neM: by (59) responds to with the desired responsg = Tyr.
where M, denotes a set which includes althat cannot be In Sections 8.1-8.3 we discussed how restricted complexity
falsified by data up to time models for LTI systems could be identified in closed-loop.
Now if (ii) holds for the estimator (82), it holds that per- When a non-linear full-order model is available, the method
formance is guaranteed b§(», ). Suppose now that, is outlined in Section 8.1 can be adapted to the non-linear

a valid description of the true system, meaning that (81) setting. When this is not the case, the ideas in Section 8.3
holds regardless of which input is applied. Thene M, of closed-loop identification can be used. Notice that no use
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of that the system is LTI was made in the derivation (70).
Hence, for any system,

y—Tar=y—ys=1—-Ty)(y — Gu), (83)

whereu andy are the closed-loop signals with the controller
C = C(G) defined in (59) in the loop. This expression for
y — yq was derived in this non-linear setting enriksson,
Markusson, and Hjalmarsson (2004)d similar observa-
tions have been made lorowitz (1992) Thus, if there is

a modelG* such that the corresponding mod&{(G*) re-
sults iny = y4, then the right-hand side of (83) will be zero
when G = G* and when data is collected witfi(G*) as
the controller in the loop. This implies that the modgt
corresponding to the desired controller will be obtained in
closed-loop identification when the desir€dG*) is oper-
ating in the loop and if the prefilter + T, is used in the
identification Henriksson et al., 2001

Notice that since the system is non-linear it may very well
happen thaG* is non-causal in which case the above idea
breaks down.

Disregarding this, the discussion above supports the in-
tuitively appealing idea that the identification experiments
should be carried out under tbesiredoperating conditions.

A limitation of the argument above is that it is based on

studying one single trajectory and, hence, does not give any

information about the behavior for other reference signals,
and in particular of closed-loop stability. We will return to

how to generate the desired operating conditions in Section

11.3.2 where also an example is presented.

9.2. Control relevant near-optimal models

In Section 8.10 the approach was to ensure robust stabil-

ity and robust performance by making| small. The mo-
tivation was the arguments brought forward in Section 7.6
which in turn were based on the factorization (64) (or the
simpler expression (67)). Now this factorization generalizes
to the non-linear cas&ker & Nikolaou, 2002. For exam-
ple, (67) still holds where nows, is to be interpreted as a
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This means that when a linear model and linear control
design is sought for a non-linear system, the minimization
of the weighted relative error is still a valid criterion.

In Section 4.4 we discussed near-optimal LTI models of
systems that were themselves LTI. The conclusions from
this section also extend to non-linear systems. This means
that for a non-linear parametric model structure, to which
the true system belongs, the simplest unfalsified model can
be used with the total error being less than two times that of
the full-order model structure. Thus, if there is an LTI model
within the confidence region for the full-order model, this
model can be used. If it exists, such an LTI model can be
obtained by direct least-squares identification as described in
Section 4.4. We remark that it may be non-trivial to compute
the maximum error gain between the model corresponding
to the center of the full-order confidence region and a model
inside this region. This is, however, an issue more related to
non-linear systems analysis than system identification.

From the above follows that the approach in Section 8.10
carries over to the non-linear setting.

In Ljung (2000)the choice of weighting filter and how
to estimate the non-linear gait —1(G, — G)/G|| are dis-
cussed. It is pointed out that only lower bounds can be ob-
tained from data and that periodic inputs can be useful since
they allow the noise to be averaged out. Another prelimi-
nary contribution in this important area &houkens, Pin-
telon, and Dobrowiecki (2002nd inMosskull, Wahlberg,
and Galic (2003}Yhese ideas are used to verify stability of
an induction machine drive.

This issue has also spurred activities in assessing how
“small” nonlinearities may influence parameter estimates
based on linear models. Enqvist and Ljung (2002} is il-
lustrated that LTI-models may be extremely sensitive to non-
linearities. InSchoukens, Dobrowiecki, and Pintelon (1998)
a general framework is developed for analyzing how linear
estimates are affected by non-linearities of the system when
the input excitation is periodic. For a concise survey of this
framework seeschoukens, Pintelon, Dobrowiecki, and Ro-
lain (2003) Best LTl-approximants for non-linear systems

non-linear operator. Furthermore, bounds such as (65) ap-are discussed iMakila & Partington (2003pndEnqvist &

ply if the largest singular value is replaced by some induced
norm (In Eker & Nikolaou (2002)it is suggested to use an

induced differential norm as this reduces the conservatism).

For example, the norm of is bounded by

G,—G
IT(G, C>W||OQHW—1

<1,
G

i2
where the second norm is the induc&t-norm

1G () ll2

Glli,2 = sup
l[uell2

u#0

(84)

where|lullz=+/)_, lu(k)|?. AboveWis an arbitrary linedr
weighting filter.

8 Invertible non-linear operators can also be used.

Ljung (2003)
9.3. High-order modeling

A three step procedure is proposedLlimg and Rivera
(2001)for identification of control relevant non-linear mod-
els. First a non-linear ARX model is estimated. This model
is then transformed into a Volterra series model since such
a model is more applicable to existing control design meth-
ods. Finally, a non-linear counterpart to the model reduction
procedure discussed in Section 8.4 is performed.

10. Direct controller tuning

In this section we will discuss two controller tuning
methods, unfalsified control and Iterative Feedback Tuning
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(IFT), where data is mapped directly into the controller. An- data set with the controlle€ in the loop. The controller is
other method with this property is virtual reference feedback falsified precisely when the specification (86) is not satisfied
tuning, cf. Section 8.6. As for VRFT, unfalsified control and for the specificsignal pair{rc (1), y(t)}f’zl.

IFT were derived without any explicit use of models. How- By, for each time instance, selecting the controller in the
ever, it is instructive to, as was done for VRFT, also inter- set of unfalsified controllers according to some selection
pret these methods in a modeling framework and this is therule, an adaptive unfalsified controller is obtain€hbral

objective of this section. & Safonov, 2003. It has, e.g., been suggested to pick the
- most promising controlleaccording to the criterion func-
10.1. Unfalsified control tion which governs the unfalsification proceSafonov &

Suppose that some apparatus is doing to be ConstructeqCabral, 200}, cf. the discussion on preferential identifica-
PP . PP going . ion in Section 8.11 where theost promising modekas
that, when applied to the system, performs a certain taskSelected
ang that, given ct)nly !n]E)ut/outFput dhaZt( from the systledrr;.k Unfalsified control can be given an even firmer relation
i)nver;io pi:c'?;esﬁse;mr:g dogmszcr’nn ;,;tizﬁseose\slﬁ;h\éve g?ourma:nieto model based control. Under LTI assumptions, the unfalsi-
s ecififé/ations To bge S ec){fic let us consider thep roblem of fied controller that minimizes (86) restrictedste= rc (87),
Pe ) P ’ . prob corresponds to the prefiltering approach described in Sec-
testing whether a certain controll€r satisfies some given

‘ ificat I if th t o tion 8.6 with the.#..-norm employed (instead of th&’»-
'E)heer g(rarrr:‘g?riZnscpeeglnlCe?tnlggz.t \é\i\ee ,olf tth;rﬁggterlc; ?nr tshae;“ze'?zfnorm used in VRFT) and the direct parametrization (60) of
unprejudiced unfalsified model$é(Z") (see Section 2.2), the model tijalmarsson & Lindqvist, 2001
then the controlle€ cannot be discarded since that particu-
lar model may correspond to the true system in which case
the controller would satisfy the specifications. We would in
this case say that treontroller is unfalsifiedHowever, since
the models ir%(Z") have completely arbitrary input/output
behavior, except for the specific input—output trajectory de-
fined byZ", which they all share, it is possible to find an un-
falsified model such that the closed-loop system consisting
of this model andC satisfies every specification that is not

10.2. Iterative Feedback Tuning

Consider the problem of minimizing the norm of
V(G(C), C) (67) when model reference control is used, i.e.
we are trying to find a reduced order controlethat makes
the complementary sensitivity function as close as possible
to the fixed reference modé&);. For simplicity, assume that
the system is noise free amd= 0. Parseval’s formula gives

violated when the closed-loop system withas controller v (G(C), C)|3

exhibits the input/output behaviat" . As we will see, this N

makes it often very simple to check whether a given con-  _— |im 1 Z (T(Go, C) — Tr(1))? (88)
troller can be falsified or not by data only. The idea of un- N—oo N —1

falsified control was introduced by Safonov and co-workers
(Safonov & Tsao, 1994, 1997see alsd<osut (1995)

To illustrate the machinery suppose that the input is gen-
erated by a one-degree of freedom controller

with r being white noise. One approach is to minimize
(88) numerically using some descent algorithm such as
Gauss—Newton. This was a popular approach in the 1950s
and early 1960s.

u=Cr —y), (85) For this, the sensitivity, i.e. gradient, 6f (G,, C) — Ty)r

with respect taC is required (or rather the parameters®f

wherer is an external reference signal. Suppose also thatpyt we will omit this from the discussion). Straightforward
a reference model; is given and that our performance gifferentiation gives

specifications are

d -1
ly = Turll2<plrll2. Vr: [Irl2<oo 86)  gc TG €)= Ta)r =CT(Go, O)(1 =T (G, Ohr

for a given constanp. We now ask the following question: =CTT(Go, O)r = y(C),  (89)
Given arbitrary input/output dat&" , what can be said about ~ where y(C) denotes the output of the closed-loop system
which controllers satisfy (86)? The key to resolving this (47) with controllerC in the loop, assuming = 0. Thus
problem is to note that it follows from (85) that for arbitrary we see that the above sensitivity can be obtained from the

input/output datal, y from the system, the signal closed loop systen®j under noise-free conditions with con-
1 troller C in the loop by (1) first performing an experiment
re=gu +y (87) with r as reference and collecting the outpytC) and (2)

usingr — y(C) as reference in a new experiment whose out-
is the reference signal which with C in the loop would put is filtered throughC—1. In Narendra and Streeter (1964)
produce exactly the input/output datey. Hence, given an alternative approach where (1) and (2) were done simul-
arbitrary input/output dat&Zz”, we can think of the cor-  taneously through an outer feedback with long time-delay
responding {r¢(t), y(t)}tN:l as a (fictitious) closed-loop  was proposed.
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Iterative feedback tuning (IFT)Hjalmarsson, Gevers, e
Gunnarsson, & Lequin, 1998; Hjalmarsson, 2pDi3%a gen-
eralization of the idea above. The sensitivities of the closed
loop signals with respect to the controller parameters aree
computed from two closed-loop experiments as outlined
above. It can be shown that, even in the presence of noise, the
signal sensitivities are unbiased (modulo transient effects)e
and hence it is possible to guarantee that any convergence
point of the algorithm corresponds tostationary pointof
the desired objective function by the use of a stochastic
approximation algorithm. The idea can be applied to any,
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From (iii) in Section 6 we may conclude that an ideal
experiment should reveal exactly the information required
for the control design.

In Section 7.6 we saw explicitly in (66) how the, for con-
trol, important weighted model error (53) depends on the
experimental conditions.

In Section 4.4 it was illustrated that by choosing the input
suitably, the statistical properties of restricted complexity
estimators may be similar to those of the ML-estimate.
One may think of this as that the model bias is tuned by
the data. This relates to our observations in Section 9.1

differentiable, signal based objective function, i.e. not only
(88). IFT has been applied by the chemical multinational
Solvay SA for tuning of PID loops in distillation columns
and evaporatorsHjalmarsson et al., 1998

From (89) we may also deduce other ways to approximate
the sensitivity. The separation principle in Section 4.2 gives

that if a good estimatd of T(G,, C) is available, then a
good sensitivity estimate is obtained by replacings ., C)
by 7 everywhere in the middle expression of (89).

In De Bruyne and Carrette (199&hdKammer, Bitmead,
and Bartlett (2000it is suggested to avoid the second exper-
iment by replacind’' (G,, C) in the right-hand side expres-

where it was indicated that using data from the desired
operating conditions is very useful when trying to identify

a restricted complexity model for a non-linear system.
Going back to Section 8.5, we see that this is exactly the
reason why closed-loop identification may help to obtain
“control relevant” models for LTI systems as well.

In this section we shall further discuss how experiment de-
sign can be used to improve the closed-loop performance.
In Section 11.1 we first discuss input design for optimal
average performance. We argued in Section 7.2 that the very
high complexity of an optimal input design problem for a

sion of (89) by an estimate obtained using closed-loop datatypical control application makes such problems intractable

whenC is operating in the loop. IDe Bruyne and Carrette

(at least with existing mathematical machinery). However,

(1997)a parametric model is used whereas a non-parametricby considering the weighted relative model error, introduced

model is employed itrKammer et al. (2000)

in Section 7.6, tractable problems can be obtained. We have

The use of signal sensitivities can be seen as local mod-already touched on this issue in Section 8.10 and we will
eling (around the current controller parameters) of how the pursue this in Section 11.2 by taking the input design into
closed-loop signals depend on the controller. This has theaccount.

important implication that IFT is able to cope with certain
nonlinearities also, ctjalmarsson (1998and Sjéberg and
De Bruyne (1999)See als@sjdberg et al. (2003for an al-
gorithm tailored especially for non-linear systems.

10.3. De-correlation

An interesting approach is presentediarimi, Miskovic,
and Bonvin (2003where the controller is tuned such that
y — ya4, Wherey, is the desired response, is un-correlated
with an instrumental vector which is a function of lagged
values of the reference It is shown that this can be done
iteratively as in IFT but that only one experiment is required
per iteration.

11. Experiment design

The reader may have noticed that input design has been

a recurring theme up to now. Let us recapitulate:

Another impeding factor in the use of optimal experiment
design is that the optimal solution depends onthknown
true system. This problem could be handled by input de-
signs which are robust against uncertainty about the under-
lying system were it not that also here computational com-
plexity puts severe restrictions on what can be achieved. It
also seems as if robust input design has received very lit-
tle attention. Apart from the very modest contribution in
Hjalmarsson and Jansson (2008)e author is not aware of
any contributions to this area and we will discuss this topic
very briefly in Section 11.2.

An alternative, or complement, to robust input design is
adaptive input design where the information gathered in the
experiment is continuously, or batch-wise, used to update
the input design. This is discussed in Section 11.3. Related
to this is the use of pre-tests to gain some preliminary in-
formation for further experiment design. This is the topic in
Section 11.4.

Experiment design for multivariable systems is briefly
discussed in Section 11.5. Finally, Section 11.6 is con-

e When the true system is in the model set, (36) gives a cerned with certain aspects of input design for near-optimal
bound on the frequency responses for unfalsified models models.
which depends on the input through the input spectrum as A very important part of the experiment design is to ensure

well as throughy,, y (), cf. (34).

that the input is “plant-friendly”. This means that, apart from

e In Section 5.3 we saw that (36) also determines the generating informative experiments, the input should be in

strength of any validation statements that can be made.

line with industrial demands. We will not venture further into
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this topic but the reader is referredRivera, Lee, Braun, and
Mittelmann (2003)and Parker, Heemstra, Doyle Pearson,
and Ogunnaike (20013nd references therein.

that wheruis the output of a FIR-filter driven by white noise,
the optimal filter coefficients can be computed by convex
optimization. Since any spectrum can be approximated by a
FIR-process the approach is in principle generally applica-
ble. However, when large lags are required, computational
complexity becomes an issue. One can then use other ba-

One approach to input design is to minimize teer- sis functions Jansson & Hjalmarsson, 2004®esigns for
ageof some performance degradation measure with respectFIR systems in the case of periodic or finite samples are dis-
to the input, subject to constraints on the input and output cussed irLee (2003)andJansson and Hjalmarsson (2004c)
spectra. The constraints have traditionally bee¥oftype.
One may, e.g., use (recall (63))

11.1. Optimal average performance input design

11.2. # » and robust input design

E(IIV(Gn, C(Gn))I3), (90)

The designs in the preceding section are all geared to-
wards optimizing the average performance as they are based
on (91) (or (92)). By instead using the bound (66) on the
weighted relative model erraf as design criterion, am’
type of design is obtained with guaranteed robust stability
and robust performancélfalmarsson & Jansson, 2003

where the expectation is OV€ly, as design criterion. An
approximate solution can be derived using the first order
approximation (71) oV (G y, C(Gy)), i.e. by instead min-
imizing

E{IV(Gn,C(Gn))I3). (91) A typical problem formulation could be (recall (21))
This leads to a so callet-optimal input design problem ~ Min i
where the weighted trace of the covariance matrix (20) _ Go — G(0)
should be minimized. Here the weighting matrix depends subjectto |T GO Syp Vo,
on the problem formulation. T Ry (93)
It has been more common to consider (0 —0,) - (0= 0,) < 12(n).
1
E{[lJ(Go, C(Go), Go, C(G))?) (92) 5 [T Pu(@) do < .

as criterion, which again via a Taylor approximation leads Here the constraints state that the weighted relative error
to an L-optimal input design problem. As mentioned in (recall (53))|4| should be smaller than some pre-specified
Section 7.6, the two criteria (90) and (92) coincide when valuey, for all frequencies» and for all models in the confi-
M(G, C(G)) is independent ofc. One such example is  dence region (23) (which is given by the second constraint).
model reference control. Also minimum variance control of Thus the minimum input energy required to meet this objec-
minimum phase systems fits into this category if, as is rele- tive, and the corresponding input spectrum, are sought. This
vant for this problemJ in (62) is replaced by the difference type of problem has been coined “least-costly identification
in transfer functions from the white noise disturbarecia experiments” iBBombois, Scorletti, Van den Hof, and Gev-
(25) to the output between the true system and the model. ers (2004) Following (iii) in Section 6, we have that the

Starting with the now classical referen€gdvers & Ljung, boundy, should be made small, but not too small in order
1986, there have been a series of contributions to the aboveto limit the modeling requirements.
problem based on the variance expression (28) using the It turns out that this type of problem can be approxi-
high-order approximation (32), and its closed-loop counter- mated by a convex optimization problem that gives solu-
part, with specific applications to identification for control. tions close to the optimundénsson & Hjalmarsson, 2004c,
When there is a constraint on the output variance, the opti- 2004b; Jansson, 20P4Ne illustrate with an example.
mal experiment is to use a controller which is the solution
to an LQG-problem determined solely by the constraints Example 11.1. The true system is given by
(Forssell & Ljung, 200D Thus applications with different 1

S . X . 0.36¢
objective functions but with the same constraints share the y (1) = ————— u(1) + (1),
same optimal experiment. Hence, the optimal experiment is 1-0.7q
typically in closed-loop in this case. However, it is worth wheree(t) is zero-mean white noise with variance 0.1. We
noticing that when the noise is white, the solution to the want to estimate a model
associated LQG-problem is open loop operation when only bg~1
the output variance is constrained.

G(0) = 0=[ab]",

Instead of relying on (32), the variance expression (29)
can be used directly for input desigBédoley & Lee, 2001;
Lindqvist & Hjalmarsson, 2001 In Cooley and Lee (2001)

1+aqg= 1’

based onN = 500 samples of input/output data. The in-
put design problem is formulated as in (93) wjth = 0.1,

it is suggested to optimize directly over the input sequence 72(n) = 5.99 (which corresponds to a confidence level of

whereas inLindgvist and Hjalmarsson (2001) is shown

95%) and withT given inFig. 12
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Optimal input design for low order models may some-
times produce counterintuitive designs. This can be at-
tributed to the strong extrapolation properties over the
frequency axis for low order models. The behavior, and,
hence, the accuracy, at one frequency is highly coupled
to the behavior at another frequency. The input spectrum
obtained in Example 11.1 is quite reassuring in this aspect.
Despite a first order model, the input energy is largest in the
frequency region between the open loop systems cross-over
frequency and the designed closed-loop system bandwidth.
This is in complete consistency with the discussion of the

@ performance specifications versus experimentation effort
Fig. 12. Magnitude plot for Example 11.1. Thick solid line: optimal input (Trade-oﬁ 1) in Section 7.6. e
spectrum. Dashed line: white input spectrum with same power as the In Section 7.1.2 we saw that robust stability is tied to the
optimal input. Thin solid line: desired complementary sensitivity function. v-gap. From Proposition 7.1 we see that the larger the maxi-
Dash—dotted line: open loop system. mumyv-gap is for a model set, the larger the generalized sta-
bility margin b ¢ has to be in order to guarantee stability
for systems belonging to the model set. In particular if the
maximumv-gap exceeds 1, stability cannot be guaranteed.
This is the motivation for the work inlildebrand and Gev-
ers (2003awhich presents a method for minimizing (with
respect to the input spectrum) the worst-casgap taken
over all models in the confidence region (23) produced by
prediction error identification.

-0.62 F
-0.64 p
-0.66 |-

-0.68 |

o2 |
11.3. Adaptive input design

-0.74 ||

076 | | As we have seen, in the early 1990s several schemes that
iterated between identification and closed-loop control were
proposed. In fact, it was suggest&thrama, 1992hat high
performance control based on restricted complexity models
required such iterations. However, as we have indicated in
Fig. 13. Example 11.1. Dots: the estimated model parameters from 1000 Sections 7.6 and 8.1, this is not necessarily so. It has also
Monte Carlo runs based on input design (93). Dashed ellipse: estimatedbeen shownBRoling & Makila, 1998, that the example in
e ot o v o v Ao i e Sy oA (19523an be sobed it teraions, So tre
as the design of (93). Contourplines with interval 0.025 are plotted fogry gues-tlpn I.S rathewhat Cz.in be ggmed by iterating between
[ 4]lc0 and | 4]lcc = 0.1 corresponds to the thick solid contour. identification and experimentation?
Clearly, when we are collecting data, we obtain new in-
formation about the system. Hence, iterating between identi-
The minimum input power i = 0.28 with the resulting  fication and experimentation is beneficial if we can improve

-0.78

b

input spectrum shown iRig. 12 The *ringing” (barely vis-  our experiment design such that marentrol relevantin-
ible) in the input spectrum at high frequency is due to the formation becomes available than if we would have stayed
FIR-filter (order 20) used to shape the input. with our present design. We have seen that there are two

Fig. 13 shows the parameter estimates of 1000 Monte quantities to consider:
Carlo runs. We see that the estimated models are clustered

inside the contoul || = 0.1 as desired. In fact, 96.7% o Minimizing varianceThe input should be chosen such as

of the estimated models satisfy the performance constraint. to minimize the impact from the noise induced errors in

The reason for a higher percentage compared to the specified the controllerC(G y) on the achieved closed-loop perfor-

95% is due to that also some estimates outside the confidence mance.

ellipsoid are inside the level curviel|lc =0.1, seeFig. 13 e Tuning the biasWhen the model set is restricted it is im-
portant that data contains the features relevant to control.

It should be noted that, as usual in experiment design, in  Thijs is embodied in that the desired operating conditions
order to compute the optimal design in the example, the true  should be mimicked as closely as possible.

system has to be known. Methods that are robust with respect
to uncertainty about the system is a wide open research field We remark that these two objectives may be conflicting.
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11.3.1. Minimizing variance: adaptive input design for LTI [
systems o1l
One of the few instances where it has been possible to o
prove that iterative identification and control design actually [
improves performance is when a full-order model is used **[
for minimum variance control design. Under the assump-
tion that (32) is valid, it was shown iHjalmarsson, Gevers, .| N,
and DeBruyne (1996)hat iterating between identification . . . s s . s s
and subsequent certainty equivalence input design, and ex- ° "7 %% %4 e ee 08
perimentation will always improve the average performance Fig. 14. Outputs used to identify linear models in Example 11.2. Solid
compared to any fix input design (other than the optimal), |ine: generated by one step of the ILC algorithm. Dashed line: generated
provided the experiment time is sufficiently long. Certainty by white noise input. Dotted line: desired output (shown for comparison).
equivalence input design means that the last estimated nom- ) _ _ _
inal model is used instead of the true system in an optimal WhereL is some dynamical operator, typically LTI, which
input design. In such an approach it would be nice if the has to be chosen such thallt the algorithm converges. It can
optimal experiment design corresponded to the optimal con- P& shown, cfMarkusson, Hjalmarsson, and Norrl6f (2002)
troller since then such iterations would not conflict with the that L plays the role of a model of the inverse of the sys-
control objective. Unfortunately, this seems to hold only for tem. Observe, e.g., that If; is the inverse of the true sys-
minimum variance controlGevers & Ljung, 19857 tem, then the desired input will be produced in one iteration
A potential problem with this approach is that instability of the above algorithm under noise free conditions. What
may occur during the identification experiment if the optimal Makes this algorithm interesting is that the model may be
experiment is in closed-loop and the certainty equivalence changed between iterations. Hence, it may be possible to use
design is based on a model of poor quality. An alternative Auite simple LTI models and still be able to generate an in-
which avoids this problem is to tune the input spectrum Put wh_lch dnveg_the system sufficiently close to the deswe_d
adaptively inopen loop(Lindqvist & Hjalmarsson, 2001 operating conditions that data collected from these condi-
Adaptive designs are also considered in, €ggley and Lee tions subsequently can be used to identify a LTI model use-
(2001) Lee (2003)Rivera et al. (2003andLacy, Bernstein, ful for control design farkusson et al., 200Zao, Kosut,

03|

04

and Erwin (2003) & Ekblad, 1993.

) ) o ) Example 11.2. The Van de Vusse systerwan de Vusse,
11.3.?. Tuning the bias: adaptive input design for 1964 is a non-minimum phase system often used as a
non-linear systems benchmark problem for non-linear process control algo-

For non-linear systems, we have in Section 9.1 seen thatjthms Doyle, Ogunnaike, & Pearson, 199%ere the ki-

it may be advantageous to have the system operating undefetic parameters have been chosen such that the system is
the desired conditions when data are collected. It may seeMgescribed by

as if this would require that the system operates in closed-

loop using an already well-tuned controller which in turn X1 = —50x1 — 10x + (10— xp)u,

would mean that there is no need to retune the controller. .

However, we would here like to draw the reader's attention *2 = 201 — 100 —xau,

to the fact that there exist open loop alternatives that are y — y,,

competitive. One advantage with collecting data in open loop

is that stability is not an issue. around the equilibrium point. The objective (chosen solely
A systematic method to iteratively generate feed-forward to illustrate the preceding discussion and not any specific

controls that approach a given output trajectory is iterative chemical process control problem) is that the complementary

learning control (ILC) foore, 1993. Given an initial “trial” sensitivity function has the same magnitude as

input ug(¢) over the time-horizon =1,2,..., N, and the 1

target output trajectoryy, (1)} ;, the input is iteratively — 7Tu(s) = 00L +1°

refined using the error between the achieved output and the '

target output as correction. A simple version of the algorithm The system is sampled with sampling time 0.72s. One it-

is to update the input at iteratidnaccording to eration in the ILC-algorithm (94) was taken with the initial
input being white noise. The inverse of a second order OE
up+1(t) = ug(t) + L (ya(®) — yx (@), t=1,...,N, model, identified around the initial trajectory, was used as
(94) Lo in the algorithm. The resulting output (shown as the solid

line in Fig. 14 was used to identify a second order OE-
7 As pointed out inForssell and Ljung (200ais does not hold for a model on which an internal model controller was designed.

two-degree of freedom model reference control as claimétjaimarsson The closed-loop output is shown as the solid lin€ig. 15
et al. (1996) It follows the desired output (the dotted curve in the figure)
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incorporated in the experiment design, cf. the discussion of
the control effort in Section 7.6.

Non-minimum phase zeros also limit the achievable band-
width. An explicit variance expression has been derived
which can be used for designing pre-test experiments so that
these zeros can be accurately identifigidtensson & Hjal-
marsson, 2003; Jansson, 2D04n interesting aspect is that
the asymptotic accuracy of the identified zeros is basically
independent of the model order when the prediction-error
method is used. Hence, model order selection is not a criti-
cal issue here.

0 Ofl 072 073 OI.4 0.‘5 076 O.I7 O.IB
t[h] 11.5. Input design for multivariable systems

Fig. 15. Example 11.2. Closed loop output. Solid line: controller designed
using model identified from ILC-data. Dashed line: controller designed  Input design is perhaps most important for multivariable
using model identified from white noise data. Dotted line: desired output. SystemS, espeC|a”y for |”_C0nd|t|0ned processes Such as

) . . » . _high-purity distillation columns. To appreciate this, notice
quite well. For comparison, a model identified using a white yat the low gain directions of the system will be poorly iden-
noise input (the output is the dashed linefiig. 14 with tified unless precautions are taken to ensure that the signal
the same energy was used in the control design instead. Thgq nojse ratios are sufficient in these directions. The problem
corresponding closed-loop response is shown as the dashedyises as the designed controller will use high gain in these
lineinFig. 15 The response is significantly more oscillatory. poorly identified directions which may be disastrous for the
closed-loop behavior when the model is poor. The key to
) g : solving this is to use correlated inputs and both open loop
Hjalmarsson (2002vhere an inverted pendulum is con-  anq closed-loop methods have been proposed to this end. In
trolled. . ~ Jacobsen (1994)n open loop grey-box experimental design

We also point out that should the process be operating injs proposed as well as a closed loop method. Another closed-
closed-loop (as is oft_en the case) with some poorly tuned loop method is used iZhu and Butoyi (2002)A general
controller, ”—S may still be used to generate a reference tra- gpservation is that attempts to perform SISO identification
jectory {r(1)},_, such that the operating conditions become 4 sych plants will fail to deliver relevant models, Zhu
closer to the desired ones. . . and Butoyi (2002andJacobsen (1994Yhe approaches in

Another example of adaptive input design for non-linear Cooley and Lee (2008ndLee (2003)already discussed in

systems iZhao and Kanellakopoulos (2002)ere the sys-  gection 11.1, are also applicable to multivariable systems.
tem has known structure with linear regressmﬂs{/k(r)

of observable, possibly, non-linear regressors that influence11_6_
the states. The system structure is such that by observin
the output it is possible to compute the linear combinations
QTlpk(t). The input is used to drive the system states such
that the regressors become linearly independent and henc
the unknown parameter vectibecomes identifiable.

A more spectacular example can be foundamsson and

Input design for near-optimal restricted complexity
odels

In Section 4.4 we saw that near-optimal models of re-
Stricted complexity exist if the confidence region for the
full-order model is large enough. For a model structufe
of a certain complexity and a given confidence lexgethis

The rel . i dinthe rel to-t thod puts an upper bound on how much information from an ex-
€ relay experiment used in the refay auto-tuner metho 'periment that is valuable from a statistical point of view. As

originally proposed istrom and Hagglund (1984%an be more information is added so that the least-squares estimate

_sefen ast_a way r? Erg];etntﬁrag_ng an expedrlr;1_er1'ct Wh'gb fprowdesfor  is no longer inside the confidence region (correspond-
information such that tn€ bias in a model IS ‘tuned for con- ing to level ) for the full-order model, there is no longer

tr?" In Ka“m" Garpla, ang Lo;gc.hhamp. (ZOOQ_)e 'dead9f any model in.# which is near-optimal. Thus, if a certain
relay experiments is combined with tuning using gradients, complexity of the model structure is pre-specified (as well

cf. Section 10.2. as the confidence level), such an upper bound should be in-
corporated in the experiment design constraints.

11.3.3. Tuning the bias: using non-linear feedback

11.4. Pre-tests — Identifying performance limitations

The experiment design is eased significantly if the inher- 12. Validation of control designs
ent limitations of the system are known. Often amplitude and
slew-rate constraints on actuators, which limit the achiev- In this section we will discuss some ideas for validation
able bandwidth, are known and this knowledge should be of control designs. We will focus on validation of stability
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but the ideas carry over to performance criteria as well. The
discussion will be limited to SISO systems.

12.1. Validating stability using the separation principle

o N A O

Suppose thab is some model of the open loop systém ©
which is LTI and thalC is an LTI controller which has been
designed usings such that the resulting complementary  Fig. 16. Magnitude curve of the frequency response in Example 12.1.
sensitivity function isT (G, C). Then, as we have seen in
Section 7.1.2, the achieved closed-loop is guaranteed to be

stable if (3) Filter the corresponding output through the inverse of
_ G: Gy (1).
1400 <1, (95) (4) Subtractu(r) from this signal:G Ly, (1) — ux(¢)
whered = T(G, C)G~YX(G, — G). Neglecting disturbances, Steps 2—4 give the signal
Suppose that some input—output dataz&tis available _
for validation of (95). In Section 5.4 we discussed general 2k (t) = A(@Qup(r), t=1,...,N.

principles for validation of restricted complexity models.
The advice was to use the separation principle. Here this (5) Lety, = llzcll2/.

means first forming a full-order estimaey of G, using (6) Letugia(t) = i %N +1-1),t=1...,N.
the available data and then computing the estimate (7) Letk=k+1 and go to Step 2.
jN =T(G,CO)G Y Gy — G), (96) The y, computed in Step 5 is clearly an underbound to the

induced.#,-norm (84) ofA.

When the experiments are noise free and performed under
zero initial conditions it can be shown that will, modulo
transient effects, converge to a sinusoid with approximately
the desired frequency. Furthermore,

and finally forming a confidence region for this estimate.
Using (36) gives

Ay @) — AE?)]

T(G C)W 1)y (00) —2 )

N Pu(@) ! ask — oo
which gives that if 00
= T(G,C) &, () wheredy, k=1, 2, ... are the impulse response coefficients
|[An ()] + ’—’ 12(n)Kn, N () XOR 1 of 4 and where the convergence is monotonic. ThusNor
“ sufficiently large, a good estimate ff ||, is obtained.

stability is guaranteed (with probability). In each iteration, it is the frequency wheféias maximum

gain that is amplified the most. Due to the normalization in
12.2. Validating stability using power iterations Step 6, the energy at other frequencies will be damped out

as the iterations proceed. The algorithm is closely related to

Suppose now that, instead of using a pre-determined datathe power method for computing the largest eigenvalue of

setZN, we have the option of choosing the input. EbtTI a symmetric matrix and we therefore call the iterations for
and stable we have that th# ..-norm coincides with the  power iterations

induced .#»-norm (84) and that inputs that maximize the .

ratio || Au||2/|lu||2 are sinusoids with frequency whesehas Example 12.1. Let 4 be of second order with the magni-

maximum gain Zhou et al., 1996; Khalil, 1996 Hence, it tude curve of the frequency response giverfrig. 16 The

would be easy to check (95) if such a sinusoid is used asmaximum gain is ato ~ 0.79.

input. Unfortunately, this frequency is not known a priori ~Initially a white input with variance 1 and lengiti=100

but one may envisage procedures which adapt the frequencys applied. It gives the output shown as the dashed line in

such that the gain is maximized. A simple method in this Fig. 17. Also shown in this figure is the output after 10

spirit is as follows: power iterations. Clearly, the latter output is not far from a

sinusoid with frequency around = 0.79.

(1) Let k = 0 and select an arbitrary input sequence In Fig. 18 the estimated gaim, is given for the first
{uk(l)} ' 1 with the constraint thaffu, |2 = f for some 10 iterations together with 4|« (dashed line). Clearly,
constantﬁ > 0. the sequence of gain estimates converges exponentially fast

(2) Perform an experiment wherg () is applied toG.,: to a rather accurate lower bound for the true gain of the
k() = Go(Qui(t),t=1,..., N. system.
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Fig. 17. Outputs in Example 12.1. Dashed curve:
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Fig. 18. Solid line: gain versus iteration number in Example 12.1. Dashed
line: # s-norm of 4.

100 120 140 160 180 200

t

40 80

20

60

Fig. 19. Output in Example 12.2 after 10 iterations.

Example 12.2. Power iterations applied to anothérgives
the output inFig. 19 after 10 iterations. It does not even
remotely resemble a sinusoid.

The explanation is thaf is not LTI in this case, in fact it
is given by the continuous time system

X1 = X2,

ip = —2x5 — 4

X2 =—2x] —4x2 +u,
y =x2,

sampled with a sampling timg = 0.1.

initial output. Solid line: output after 10 iterations.

There are two conclusions to be drawn from Example
12.2. Firstly, power iterations can be used to detect non-
linearities in a system. If the iterations do not converge to a
sinusoidal signal, the system is non-linear. Secondly, power
iterationsmaygive a usefulowerbound on the induced’,-
norm of certain non-linear systems, cf. Section 9.2. There
is no proof for the latter statement and the author certainly
does not claim that power iterations produce monotonically
increasing lower bounds, or that the produced bounds are
accurate, for general non-linear systems. However, the nice
behavior observed for this and some other non-linear sys-
tems is intriguing.

13. Concluding remarks

Looking back at the ground covered in this paper (not to
mention all that regrettably had to be omitted), it is clear
that much progress has been made in this research area since
the book Bitmead, Gevers, & Wertz, 199@nd the SYSID
plenary in Budapest in 199G¢vers, 199}, which in many
respects can be seen as triggers for activities in this field.

Looking at the problem from a statistical perspective, we
first remind the reader of the guidelines in Section 6:

(i) Always first model as well as possible.
(i) Use a very flexible model structure as benchmark for
computing confidence bounds and mean-square error.
(i) Select the input such that the model uncertainty at fre-
quency regions of interest is insensitive to the model
complexity.

Notice that we in (i) do not refer to full-order modeling, the
aim is rather to obtain a near-optimal restricted complexity

The maximum of the gain sequence computed in Step 5model. Following advice (i) ensures good statistical prop-
in the power iterations still is a lower bound to the induced erties and enables the under-modeling to be quantified. The
Z>-norm. This sequence is shown kig. 20 Also in this model can subsequently be simplified without loss of accu-
case, the gain sequence increases monotonically. In Exampleacy. Referring td-ig. 1, this means that going from an near-
6.9 in Khalil (1996) an upper bound for the induce#»- optimal restricted model to a low order controller by way of
norm of this system is given as 1/4 (marked as the dashedcontroller reduction or model reduction will not significantly
line in Fig. 20. FromFig. 20we see that the lower bound influence the statistical properties of the procedure. Advice
produced by the power iterations is quite accurate. (ii) ensures a reasonable assessment of the model error and
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Fig. 20. Solid line: gain versus iteration number in Example 12.2. Dashed line: upper bou#t-owrm.

as we saw in Section 6, (iii) can be ensured by inputs with  Overall, we have argued that the experiment design is the
large spectral peaks (even though there seems to be more tonost importantlesign variable for a successful application

understand here). and we can summarize our observations as follows:
From (i) follows that identification and control are not as ) ]
intertwined as might be believed: e excite where it may hurt most.

On a principal level, the input should be chosen such

« For agivendata set, producing the set of unfalsified mod-  that system properties that are highly detrimental to the
els has little to do with the control problem. Once the set ~ ¢losed-loop performance are revealed by the experiment,
of unfalsified models is obtained, what remains is a robust - the discussion in Section 5.3, and the discussion of the
control problem with, in turn, little to do with the identi- performance specifications versus experimentation effort
fication problem. (Trade-off 1) in Section 7.6. See also Example 11.1.

e do not excite where it does not hurt.

There is, however, as pointed out in Section 7.4, an interface  There is no benefit from knowing what one does not have

problem between the two areas that cannot be neglected in t0 know; in this context it only means that the modeling

that the model set description obtained from system identi- Problem becomes more complex. Of course, it is typically
fication typically does not fit the present robust control de- @ priori difficult to be aware of which system information

Sign framework. Much work has been done in this area, cf. one has to know for the control design and this is one of the

Section 7.4. key problemsn identification and control. Nevertheless,
In order to use (iii), it is necessary to know the modeling it is instructive to keep this advice in mind.

requirements. For control, we have argued (Sections 7.6, adaptation increases accuracy.

8.10, 9.2 and 11.2) that these are in principle encapsulated Since the true system and the disturbances are unknown,

by the following condition on the weighted relative error: efficient resolution of the previous item is facilitated by
adaptive or iterative methods which are able to improve on
I4(Go, Gn. TG n, O <7p. (97) the input design so that future data samples contain infor-

mation of better quality from the control application point

Condition (97) clarifies the roles of the design variables and ~ ©f View. At present, the only result in this direction for
how these should be designed and traded off against each prediction error identification seems to bdjglmarsson

other. For example, for a SISO LTI system the bound (66) €t &l 1998 which in turn is based on some restrictive
applies assumptions. Notably, preferential identification in con-

junction with robust control has proven a viable route for
A A adaptation, see Section 8.11. It should also be remarked
T(Gn,C(GnN)) 2 o,
- ~ Xa(n)Kn,N . . .
Gy N - &, adaptive input designvéres, 200D

[ 4]0 < SUP (98) that there are differing opinions regarding the value of
(0]

From this expression we noted in Section 7.6 that there isa I this context, we would like to draw the attention to the
potential of using the system itself to (semi-)automatically

e control effort versus experimental information trade-off ~ generate the information of interest. This idea has been used
several times in this paper. In Section 10.2, the system was
in force. The more aggressive controller, the more informa- used to generate sensitivity information. Iterative Learning
tion is necessary in order to guarantee a snhdl|. Control was used in Section 11.3.2 to gradually move the
Condition (98) also provides guidelines for input design, sSystem trajectory closer to the desired one. It was pointed
cf. Section 11.2. High input energy density is required where out in Section 11.3.3 that relay feedback can be seen as
the designed control effortT (G, C(Gy))/Gy], is large, a way of using the system itself to automatically gener-
but shouldbe small where the designed control effort is ate a certain type of information. Finally, power iterations
small in order to reduce the modeling effort. were used in Section 12.2 to estimate the gain of a system.
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