Digital Logic Design Introduction

EECE 256

Dr. Sidney Fels Steven Oldridge

Introduction

- Introduction to Digital Design
 - or, how I learned to love 0 and 1
- Follow text somewhat closely but augment
- Use the LIP structure
 - 2 weeks on, 1 week off
- Office hours:
 - Tues and Thurs, 2:30-2:30pm
- Two instructors available
 - Sid Fels and Steve Oldridge
 - plus TAs

9/13/10

(c) S. Fels, since 2010

Introduction

- Assignments handed out online
 - are expected to be completed
 - solutions provided shortly after assignment given out
 - not marked
- Quizzes during selected Friday tutorials and will be graded
- Grades:
 - Quizzes: 15%– Midterm: 25%– Final: 60%

(c) S. Fels, since 2010

Overview of Topics

- 1. History of Digital Computing
 - why digital design is important
- 2. Digital Systems and Binary Numbers
 - how to represent and work with numbers
- 3. Boolean Algebra and Logic Gates
 - the basics functions with bits
- 4. Gate-level Minimization
 - how to make it simpler
- 5. Combinational Logic
 - let's make it more complex to do more

(c) S. Fels, since 2010

Overview of Topics

- 5. Synchronous Sequential Logic Design
 - adding a memory element so the system has state
- 6. Registers and Counters
 - useful state machines
- 7. Memory and Programmable Logic
 - larger scale state representations
- 8. Design using Different Digital Components
- bringing it all together
- 9. Some HDL approaches to Digital Design
 - we'll use some HDL throughout term so you have an introduction to it
 - you have Verilog simulator with your text too

9/13/10

(c) S. Fels, since 2010

Digital Systems and Binary Numbers

- First computing device, called Difference Engine by Charles Babbage (1822)
 - Mechanical with crank power
 - Used base 10 as its number system
 - Calculate mathematical tables

9/13/10

permission: wikiMedia common

Meanwhile, some theory developments...

- George Boole (1854)
 - demonstrates that logic is math
 - creates notion of Boolean Algebra
 - mathematics of binary numbers
- Claude Shannon (1937)
 - showed two-valued Boolean Algebra
 - called switching algebra
- opened the door for digital design
- the foundations of our current computers
- and, the starting point of our course

9/13/10

(c) S. Fels, since 2010

Where this course fits:	-
Where this course has.	
Problem statement specifications, design requirements	
Behaviour description	
algorithmsflowcharts	
state transition diagrams Boolean logic and state	
 logic equations 	
digital circuit schematics4. Hardware Implementation	
TTL gates (AND, OR, NOT, XOR)Modules (counters, shift registers,)	
 Programmable logic 	
9/13/10 (c) S. Fels, since 2010	10
Where this course fits:	-
Problem statement specifications, design requirements	
Behaviour description algorithms	
 flowcharts 	
Boolean logic and state	
logic equationsdigital circuit schematics	
4. Hardware Implementation – TTL gates (AND, OR, NOT, XOR)	
 Modules (counters, shift registers,) 	
Programmable logic	
First half 9/13/10 (c) 5. Fels, since 2010	
of and any	
M/le and their course fits.	
Where this course fits:	
Problem statement	
 specifications, design requirements Behaviour description 	
algorithms	
flowchartsstate transition diagrams	
Boolean logic and state logic equations	
digital circuit schematics Hardware Implementation	
TTL gates (AND, OR, NOT, XOR)	
Modules (counters, shift registers,)Programmable logic	
Second half	

W	here this course fi	ts:	
Behaviour of	ations, design requirements description		
 logic equ 	uations -> code recuit schematics -> code HDL he	lps here; programming language	
Tataware implementation TTL gates (AND, OR, NOT, XOR) Modules (counters, shift registers,) Programmable logic helps with complex			
- ASIC	(c) S. Fels, since 2010	13	
	Let's begin		
Question	S		
9/13/10	(c) S. Fels, since 2010		