
 1

Abstract—M-commerce is the buying and selling of goods and

services using wireless handheld devices such as cellular
telephone and personal digital assistants. One of the main
concerns in m-commerce is the lack of verified authentication
and key establishment protocols that are secure against fraud,
counterfeit, and theft in mobile electronic transactions. In this
report, the current m-commerce authentication protocols are
studied and one of them named NAETEA is verified formally
using Murphi, which is a formal verification tool. The result of
formal verification of this protocol shows that it is secure against
the attacks in which attacker can replay the previously
transferred messages or generate messages using some
components of previously transferred messages.

I. INTRODUCTION

N the recent years e-commerce technology has developed
rapidly. On the other hand, there is a growing demand for

using mobile devices. The combination of these two
phenomena has lead to emergence of m-commerce. M-
commerce (mobile commerce) is the buying and selling of
goods, services and information using wireless handheld
devices such as cellular telephones or personal digital
assistants (PDAs) which uses a wireless connection to
establish a communication between all necessary parties in a
financial transaction. The transaction can use the Internet as
the medium; however, any other network can be used. M-
commerce is the new mode of e-commerce, which is getting
popular increasingly because of widespread use of wireless
and mobile communication devices. Although m-commerce
provides many new commercial opportunities, it presents
many technical challenges. One of these challenges is securing
the whole infrastructure, which supports m-commerce
transactions. One of the most crucial security concerns in m-
commerce is the mutual authentication and key establishment
between wireless device of client and the wired service
provider. However, the specific features of m-commerce
infrastructure causes that the security mechanisms and
protocols which are applied in wired networks can not be
applied in m-commerce. The first feature is that m-commerce
infrastructure consists of a wired network backbone such as
Internet and a wireless access network. While the wired part of
infrastructure has large amount of computational, storage and
bandwidth resources, the wireless portion and mobile devices
are limited in terms of such resources. Secondly, users of m-

commerce applications can perform transactions while they
are in move. However, in the wired infrastructure, all the
involved parties in the transaction are fixed. The third distinct
feature of m-commerce infrastructure is the openness of air
interface, which is more vulnerable to snooping. The above-
mentioned features decrease the security of m-commerce
environment so that achieving secure protocols in m-
commerce is more challenging.

There is an evident need to prove that the authentication
protocol of an m-commerce application is secure against
different types of attacks so that users can rely on the system
to trade business or do online shopping. One approach to
prove the security of an authentication protocol is the use of
formal verification methods. Formal methods verify the
correctness of systems that are too complicated and whose
correct operation is of so high importance. To verify a system
formally, first the system is specified in a formal specification
language that has some mathematical basis. Then theorems are
proved about the specification with the assistance of an
automatic theorem-prover. The reason for using formal
verification tools to analysis the security of an authentication
protocol is that they can explore the whole state space that a
protocol covers. Although the security protocol specifications
are usually very small (not more than four or five message
exchanges typically), they operate under complex
environments. Therefore, to analysis a protocol for
correctness, it is necessary to consider many roles, and their
interactions with each other and the intruder behavior. Formal
verification tools can assure that they examine all the possible
interactions between all the involved parties in the protocol.

In this report one of the m-commerce authentication and
key establishment protocols named NAETEA is verified
formally using Murphi. Murphi is a general-purpose state
enumeration tool, which has been used to analysis
NeedhamSchroeder protocol, Kerberos and TMN protocol. It
has been shown in [1] that Murphi is efficient for examining
relatively short protocols and can detect replay attacks or
errors resulting from confusion between independent
executions of a protocol by independent parties.

 The remainder of this report is structured as follows.
Section 2 is related works in which the current m-commerce
authentication protocols and the current verification tools are
introduced. It also introduces the m-commerce protocols,
which have been verified formally. Section 3 introduces
Murphi and section 4 explains NAETEA authentication
protocol, which has been analyzed in this report. Section 5

Formal Verification of an Authentication
Protocol in M-Commerce

Sara Motiee
University of British Columbia

motiee@ece.ubc.ca

I

 2

shows how this protocol is modeled and verified using
Murphi. Section 6 presents verification results and section 7 is
conclusion.

II. RELATED WORKS
In this section, the authentication protocols, which have

been used in m-commerce, are introduced briefly. Then the
existing formal verification tools and approaches are
reviewed. Also the m-commerce authentication protocols,
which have been analyzed using formal methods, are
introduced.

A. M-Commerce Authentication Protocols
The current authentication protocols between wireless

devices and wired service providers can be categorized to two
groups. The first group applies a trusted third party to do the
authentication between two parties and the second group does
not use any third party. Each group approaches have some
advantages and disadvantages. The first group approaches
minimize the overhead on mobile devices but the third party is
able to access the session key and communication traffic. Also
the third party will be a security bottleneck. The second group
approaches may use public-key infrastructures, which are not
cost-effective for mobile devices.

Some examples of the first category include the protocol,
which is introduced in [2] and applies entity authentication
method based on self-updating hash chains scheme. The other
protocol [3] is based on combining the KryptoKnight protocol
[4] and the X.509 protocol [5]. It also decreases the security
risks implied by trusted third party because the third party
does not keep the consumers’ important payment information,
such as credit card or debit card information. Also Zhang [6]
has proposed an asymmetric authentication protocol named
NAETEA (Network Assisted End-To-End Authentication) in
which the wireless access home network of a mobile station
assists in authentication of mobile station and service provider.

The second category of m-commerce authentication
protocols does not use any third party. One example is Simoes
et al’ s protocol, which is based on symmetric cryptography
but requires a previous agreed internal key between service
provider and mobile device [7]. AuthenLink [8] is another
authentication protocol, which operates using a
microprocessor chip (ChipTag) implanted under human skin.
The ChipTag is able to authenticate user’s access to systems
and connects them wirelessly through the Radio Frequency
Identification technology. One more example is ASPeCT [9],
which has tried to solve the performance problem. However, it
is assumed that the service provider has a reliable identifier
which mobile device knows it before starting the transaction.

Among the current m-commerce authentication protocols,
two of them have been verified formally. The first one is Chen
et al.’s protocols which is based on hash chain [10]. Three
entities exist in this protocol: mobile user, network
information service provider and trusted third party. The
authors have proposed an extended form of BAN Logic [11]
for analysis of their protocol. They have shown using BAN
Logic that the goals of authentication of these entities are

achieved. However, no intruder is modeled in their analysis.
The other formally verified protocol is Song et. al’s

protocol [3] in which a third party takes care of authentication
between buyer and seller. Authentication between the sellers
and third party is achieved using symmetric key cryptography
and authentication between seller and third party is done via
PKI system. This protocol is verified by using CSP/FDR [12]
and guarantees that the three parties can authenticate to each
other. The authors have also modeled the intruder who can
overhear all network messages; prevent messages from their
intended recipients; and transmit fake messages to any other
party.

The protocol, which is studied in this report, is named
NAETEA [6], which uses home network of mobile station in
authentication process and will be explained in section 4.

B. Formal Verification Methods
Authentication protocols are well suited for being analyzed

using formal verification methods. They are usually well
defined so that they can be modeled accurately and also they
are complex so that their analysis using manual approaches is
prone to errors. Different formal verification tools have been
applied on security protocols [12]. Each of these tools has
some limitations, which make the verifying of protocols a
challenging job. Some of the verification tools are general-
purpose model checkers such as FDR [13] and Murphi [1];
and some are special-purpose model checkers such as
Interrogator [14], Brutus [15] and NRL Protocol Analyzer
[16]. FDR is a model checker for CSP (Communicating
Sequential Processes). Every role of a protocol is translated to
a CSP process; also there is an intruder process in the model.
Then a concurrent composition of finitely many instantiations
of the role processes and the intruder process is considered,
and checked against different properties. Murphi is an
automatic verification tool, which searches for insecure points
within the state space using a model checker. The general-
purpose model checkers suffer from the state space explosion
problem. So they can be used for verifying the protocols
which have a small number of participants, e.g. three or five,
and send and receive a small number of messages.

Interrogator and Brutus start with an initial state of a
protocol execution and search through all possible sequences
of actions to see whether an attack could happen. NRL
Protocol Analyzer starts from an insecure state and performs a
backward search trying to prove that this insecure state is
unreachable. It can prove a protocol to be correct for arbitrary
number of participants. However, it requires high level of
expertise, and its running time is considerable.

A different approach, based on formal verification, is to use
model logics. The best example of this category is BAN logic
[11]. For using BAN Logic, an initial set of beliefs is adopted,
and then another set of beliefs is adopted when a message is
received in a protocol. If the resulting set of beliefs is
acceptable, then the protocol is proven to be correct. The logic
cannot be used to prove secrecy, only authenticity, because the
logic does not attempt to model knowledge.

In this report, Murphi has been chosen for analyzing the m-

 3

commerce authentication protocol. Murphi will be introduced
in the next section.

III. MURPHI
Murphi is a protocol verification tool that has been used to

verify some protocols in the area of multiprocessor cache
coherence protocols and multiprocessor memory models
[1][17][18]. It is an explicit state protocol verifier that consists
of a Murphi Compiler and a Murphi Verifier. To verify a
protocol, first it should be modeled in Murphi language and
some desired properties about the protocol should be defined.
Then the Murphi compiler is applied on the modeled protocol
and generates a special-purpose verifier for this particular
Murphi description. The generated verifier is a collection of
C++ include files and contains the core state enumeration
algorithms. This verifier automatically checks by explicit state
enumeration if all reachable states of the model satisfy the
defined properties. For the state enumeration either breadth
first or depth first search can be selected.

To model a protocol in Murphi language, some global
variables, data types, transition rules and a set of invariants are
defined. The state of the model is the value of all global
variables and transition rules specify how one state is evolved
to the next state. Each rule has a condition and action. If the
condition is satisfied, the action will be executed.

The correctness of protocol can be checked in three ways.
First some invariants can be defined which are Boolean
conditions that have to be true in every reachable state. The
second approach is to using explicit "assert" and "error"
statement that can be called within an action. If one of these
conditions occurs, the verifier halts and prints a sequence of
states that leads from the initial state to the error state. The
third approach is to check protocol for deadlock state in which
no other state than the current state can be reached.

Murphi has been used to analysis three security protocols so
far and has succeeded to find some security vulnerabilities in
them [1]. These protocols include NeedhamSchroeder
protocol, TMN and Kerberos protocol.

Similar to other general-purpose model checkers, Murphi
may encounter state explosion problem and also modeling the
intruder has difficulties. However, Murphi implements a richer
set of methods such as symmetry reduction, hash compaction,
reversible rules and repetition constructors which increase the
size of the protocols which can be verified and reduce the
memory and runtime requirements during the state
enumeration. Also it has implemented improvements for
analyzing security protocols so that the modeling of intruder
will be easier [19].

In this report, Murphi 3.1 is used which include the above
features [18].

IV. NAETEA PROTOCOL
In [6], a novel protocol for mutual authentication and key

establishment between a wireless device and wired service
provider is proposed. This protocol is based on asymmetric
cryptography but the heavy cryptographic operations are

shifted toward service provider and home network of wireless
device. Also the home network does not have access to session
key or any plain-text messages transferred between two end
entities and the home network is accountable for every
operation it performs.

The end-to-end authentication between a MS (mobile
station) and a SP (service provider) can be fulfilled using three
authentication processes: MS-HN authentication (HN is the
home network of mobile station), HN-SP authentication and
MS-SP authentication. It is assumed MS and HN are already
authenticated using home networks standards and they share a
secret session key KMS-HN and a secret temporary identity
TMUI which is used as the identity of the MS during end to
end authentication. Also since HN and SP are connected to
wired network, their authentication can be performed using
different protocols and it is assumed they have been
authenticated to each other and share the session key KHN-SP.
So the authentication between MS and SP can be done through
the following steps:

1. An MS initiates the authentication process by sending to
HN its identity idMS, the SP’s identity idSP and a random
number encrypted with the public key of the SP (EpuSP(x)).
All these fields are encrypted using the session key KMS-HN.
Also the integrity of message is provided using a keyed hash
value of the whole message.

2. The HN forwards EpuSP(x) to the SP together with a
hash value h(TMUI) and its signature sigHN (=
EpvHN(h(h(TMUI), EpuSP(x))), where pvHN is the private
key of the HN. The message is encrypted using session key
KHN-SP.

3. The SP replies to the MS’s request with a random
number y and its signature sigSP (= EpvSP(h(y)), where pvSP
is the private key of the SP). It then computes the secret
session key KMS-SP (= h(x, y)).

4. The HN forwards y to the MS with a hashed value h(KHN-

SP). h(KHN-SP) will be used to authenticate the SP to the MS.
5. The MS computes the session key KMS-SP (= h(x, y)) and

sends a verifiable authenticator h(h(TMUI), KMS-SP) to the SP.
6. The SP computes hash value h(h(TMUI), KMS-SP), where

the value h(TMUI) is received in message 2 and KMS-SP is
computed by the SP. If this value equals the value received
from MS, the MS is authenticated. Then the SP computes
h(h(KHN-SP), KMS-SP) and sends it to the MS.

7. MS uses h(KHN-SP) received in transaction 4 to compute
value h(h(KHN-SP), KMS-SP), and compares it with the one
received. If they are equal, the SP is authenticated and the
authentication process is successfully completed.

V. APPLY MURPHI ON NAETEA PROTOCOL
To model the NAETEA protocol using Murphi, the below

steps have been followed:
1- Model the protocol in Murphi: In this step the required

data structures and rules for modeling the protocol is defined
in Murphi language. For this purpose, MS, HN and SP are
modeled by separate data types, which include their state and
identity of the other two parties which they communicate with.
Each of these entities can be in 3 states:

 4

a) Sleep: The entity has not initiated any message.
b) Wait: The entity has generated a message and is waiting

for a response.
c) Commit: The entity has received the desired response and

is not going to reply back.
Also another data type is defined for a message and seven

message types are specified. Other data types are defined for
pair session keys between each two parties, HN and SP
signatures, encrypted random numbers and the keyed hashed
values that are used for integrity checking. The network is
modeled by an array of messages and the total number of
allowed messages is configurable.

 For modeling the message transfer, seven different rules
are defined, which show when each party is activated and how
it responds to a received message.

Another part of the model is called “StartState” in which the
MS, HN, SP and intruder are initialized by setting their states
and their other data fields.

As an example, the data structures that have been defined
for modeling the MS are as follows:

const:
 NumMS: 1; -- number of MS
type:
 MSIdentity: scalarset (NumMS);
 States : enum {
 SLEEP,
 WAIT,
 COMMIT
 };
 MS : record
 state: States;
 homenet: HNIdentity;
 servicepro: SPIdentity;
 end;
var mob: array[MSIdentity] of MS;

NumMS defines the number of MS in the network.

MSIdentity represents the Id of MS and is a sub range of
NumMS. Each MS is modeled by a record named MS, which
consists of its state, the identifier of home network and
identifier of service provider which mobile station initiates the
communication. Finally, ‘mob’ is an array of MS record,
which keeps the data of each mobile station. In the ‘StartState’
section of the model, the state of all MS is initialized to Sleep
and the identifier of their home network and service provider
are determined.

The behavior of mobile station is modeled with 3 rules. In
the first rule, MS initiates the authentication by sending a
message to HN and changes its own local state from SLEEP to
WAIT. The second rule models the reception and checking of
the reply from HN and sending the message to SP. The third
rule checks the response from SP and in case the message is
correct, MS’s state changes to COMMIT. Similar rules are
defined for HN and SP. As an example, the following rule,
shows how MS initiates the protocol:

ruleset i: MSIdentity do
 ruleset j: AgentId do
 rule 20 "MS starts protocol (step 1)"
 mob[i].state = I_SLEEP &
 !ismember(j,MSIdentity) & -- only HN, SP and intruders
 multisetcount (l:net, true) < NetworkSize ==>
 var
 outM: Message; -- outgoing message
 MS_HN_key: PairKeyMS_HN;
 enX: EncryptedNounce;
 intChek: IntegrityCheckerM1;
 homenetworkid: HNIdentity;
 serviceproid : SPIdentity;
 begin
 undefine outM;
 outM.source := i;
 outM.dest := j;
 undefine MS_HN_key;
 MS_HN_key.party1 := i;
 MS_HN_key.party2 := homenetworkid;
 outM.keyM1 := MS_HN_key;
 outM.mType := M_1;
 outM.mobileId := mobileid;
 outM.serviceId := serviceproid;
 undefine enX;
 enX.key := serviceproid;
 enX.nounce:= i;
 undefine intChek;
 intChek.id1 := i;
 intChek.id2 := serviceproid;
 intChek.encryptedX := enX;
 intChek.key := MS_HN_key;
 outM.encryptedX := enX;
 outM.checker1 := intChek;
 multisetadd (outM,net);
 mob[i].state := I_WAIT;
 mob[i].homenet := homenetwork;
 mob[i].servicepro := serviceproid;
 end;
 end;
end;

Since the rule is defined using ruleset, it will be instantiated
for each MS. So when the value of NumMS is changed, the
number of rules will be changed as well. The condition of the
rule states that if MS is in SLEEP state and the destination of
message is an entity other than MS and also the number of
current messages of the network is less than the maximum
allowed messages, this rule can be activated. When the rule is
activated, the first message of the protocol will be composed
and added to network. Also the state of MS is updated to
WAIT.

2- Add an intruder to the model: It is assumed that intruder
is a participant in the protocol that can initiate communication
with other participants of the system. Also intruder can
perform the following actions:

a) Overhear every message: Remember all parts of each
message.

b) Replay the intercepted messages.
c) Generate messages by using the components of

 5

intercepted messages.
The intruder is modeled by an array of messages and

components of messages he knows. These components include
random numbers and hashed values, which are transferred in
protocol messages. Also three rules are defined for
implementing the above three actions of intruder. As an
example, the following rule shows how intruder intercepts a
message:

ruleset i: IntruderId do
 choose j: net do
 rule 10 "intruder intercepts messages"
 !ismember (net[j].source, IntruderId) ==>
 var temp: Message;
 begin
 alias msg: net[j] do -- message to intercept
 temp := msg;
 undefine temp.source; -- delete useless information
 undefine temp.dest;
 multisetadd (temp, int[i].messages);
 end;
 end;
 multisetremove (j,net);
 end;
 end;
end;

3- Defining the desired properties of the protocol: For
verifying the correctness of protocol, two invariants are
defined. These two invariants state that MS and SP should be
authenticated correctly. One of the invariants is as follows:

invariant "SP correctly authenticated"
 forall i: MSIdentity do
 mob[i].state = COMMIT &
 ismember(mob[i].servicepro, SPIdentity)
 ->
 serpro[mob[i].servicepro].mobile = i &
 serpro[mob[i].servicepro].state = COMMIT
 end;

This invariant basically states that for each MSi, if it is

committed to a session with a SP, this SP (whose identifier is
stored in the SP field of MSi) must have started the protocol
with MSi (i is stored in the MS field of this SP) and must be in
Commit state.

The other invariant is defined similarly to verify that MS is
authenticated correctly.

VI. VERIFICATION RESULTS
After modeling the protocol in Murphi language, the

Murphi execution environment is setup. Then the modeled
protocol is translated to a C++ file using Murphi compiler.
The C++ file will also be compiled using a C++ compiler and
an automatic verifier will be generated which is an executable
file and verifies the correctness of protocol.

By changing the value of constant parameters of the model,
different results can be obtained. Table 1 shows the result of

verification for different number of MS, SP, HP, intruder and
network size (The maximum number of messages which is
allowed in the network.). The results which include the
number of explored states and the time of verification are
obtained by running the Murphi on a PC station with a 2.33
GHz Intel Dual Core CPU and 2 GB RAM.

TABLE I

NUMBER OF REACHABLE STATES IN DIFFERENT EXECUTION CONDITION

Number of
MS HN SP Intruder

Network
Size States Time

1 1 1 1 1 18000 1.25
1 1 1 1 2 87021 17.45
2 1 1 1 1 54304 8.32
1 2 1 1 1 57902 9.01
1 1 2 1 1 60982 9.32
2 2 1 1 1 716001 405.09

2 2 2 1 1 State
Explosion *

By increasing the number of involved parties in the

protocol, Murphi encounters state explosion problem, which is
shown in Table 1 as well.

By running the verifier in the above conditions, no error is
found the protocol. So the result of verification proves that
NAETEA protocol is able to authenticate the mobile station
and service provider correctly and is not vulnerable to attacks
in which intruder is able to replay the previously transferred
messages or generate messages using some components of
these messages.

VII. CONCLUSION
The success of m-commerce application is highly dependent

on the secure and correct authentication of mobile user and
service provider. However, most of the current m-commerce
authentication protocols do not guarantee the correct
authentication. One way to prove the correctness and security
of a protocol is formal verification. In this report, after
reviewing the current m-commerce authentication protocols
and current formal verification tools, one of the m-commerce
authentication protocols named NAETEA is verified using
Murphi, which is an explicit state protocol verifier. In
comparison to other model checker, Murphi has richer set of
operations and repetition constructors, which enhance the size
of verifiable protocols. Also because of use of symmetry
reduction and hash compaction techniques, the verification
time has decreased. For modeling the NAETEA, 7 transition
rules, 3 states, two invariants and other required data
structures for modeling the mobile station, service provider
and mobile home network are defined. Also the behavior of
intruder is represented by 3 rules, which can intercept the
message, replay old messages or generate new messages using
the components of old messages. The verification results for
different configuration of this model proves that NAETEA can
achieve the authentication of mobile user and service provider
correctly and is secure against such an intruder behavior.

 6

REFERENCES
[1] J. C. Mitchell, M. Mitchell, and U. Stern, “Automated Analysis of

Cryptographic Protocols Using Murphi”, In Proc. of IEEE Symposium
on Security and Privacy, pp. 141-151, 1997.

[2] L. Chen, H. Zhang, and N. Liu, “Authentication and Micropayment
Protocols based on Self-Updating Hash Chains”, In Proc of Sixth
International Conference on Grid and Cooperative Computing (GCC
2007), pp. 467-472, 2007.

[3] M. Song, X. Hu, J. Li, and G. Deng, “An Authentication Model
Involving Trusted Third Party for M-Commerce”, In Proc. of the Sixth
International Conference on the Management of Mobile Business, pp.
53-59, 2007.

[4] P. Janson, and G. Tsudik, “Secure and Minimal Protocols for
Authenticated Key Distribution”, Computer Communications Journal,
Vol. 18, pp. 645-653, 1995.

[5] “The directory authentication framework”, CCITT Recommendation
X.509. CCITT (1998).

[6] L. He , and N. Zhang, “An Asymmetric Authentication Protocol for M-
Commerce Applications”, In Proc of the Eighth IEEE International
Symposium on Computers and Communications, pp. 244-250, 2003.

[7] P. Simões, P. Alves, J. Rogado, and P. Ferreira, “An Authentication
Protocol for Mobile Devices”, International Workshop on Internet 2000
(integrated in the Internatioanl Conference on Distributed Computing
Systems-ICDCS'2000), Taiwan, April 10-13, 2000.

[8] C. Braz, and E. Aïmeur, “AuthenLink: A User-Centred Authentication
System for a Secure Mobile Commerce”, In the Proc. of the 3rd
International Workshop on Wireless Information System, pp. 1-11, 2004.

[9] G. Horn, and B. Preneel, “Authentication and payment in future mobile
systems”, In the Proceedings of European Symposium on Research in
Computer Security (ESORICS '98), Springer-Verlag, pp. 277-293, 1998.

[10] L. Chen, G. Zhang, and X. Li, “Efficient Identity Authentication
Protocol and Its Formal Analysis”, Computational Intelligence and
Security Workshops, pp. 712-716, 2007.

[11] M. Burrows, M. Abadi, and R. Needham, “A Logic of Authentication”,
ACM Transactions on Computer Systems, Vol. 8, No. 1, pp. 16-36,
1990.

[12] C. Meadows, “Formal verification of cryptographic protocols: A
survey”, In Advances in Cryptography – Asiacrypt 94, pp. 135-150,
1995.

[13] A. W. Roscoe, “Modeling and verifying key-exchange protocols using
CSP and FDR”, In Proc. of 8th IEEE Computer Security Foundations
Workshop, pp. 98-107, 1995.

[14] J. Millen, “The Interrogator model”, In Proc. of the 1995 IEEE
Symposium on Security and Privacy, pp. 251–260, 1995.

[15] E.M. Clarke, S. Jha, and W. Marrero. “Using state space exploration and
a natural deduction style message derivation engine to verify security
protocols”, In Proceedings of the IFIP Working Conference on
Programming Concepts and Methods (PROCOMET), pp. 87-106, 1998.

[16] C. Meadows, “A model of computation for the NRL protocol analyzer”,
In Proc. of the 1994 Computer Security Foundations Workshop, IEEE
Computer Society Press, pp. 84-89, June 1994.

[17] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. “Protocol
verification as a hardware design aid. In 1992 IEEE International
Conference on Computer Design, pp. 522–525, 1992.

[18] http://www.cs.utah.edu/formal_verification/software/murphi
[19] V. Shmatikov and U. Stern, “Efficient Finite-State Analysis for Large

Security Protocols”, 11th IEEE Computer Security Foundations
Workshop, pp. 106-15, 1998.

