LECTURE 13

- LED basics
- voltage efficiency
- heterojunction band diagrams
- current efficiency
Electrical-to-optical energy conversion

Why p on n, and not n on p?
Choosing the semiconductor

Indirect- or direct-bandgap material?
Voltage efficiency: choosing the colour

Sec. 8.1

\[\eta_V \equiv \frac{\hbar \omega}{qV_a} \approx \frac{E_g}{qV_a} \]
Current efficiency: choosing the structure

For high-brightness LEDs it is necessary to concentrate the recombination into a small volume.

The example shown has an active layer of low-bandgap, and confinement layers of higher bandgap.

Schubert, Ref. 8.2
Examples of colour lighting

Automotive, Traffic Signals, Signage & Contour Solutions

Regensburg bridge
Schubert, Ref. 8.2

18 million LEDs in New York city

Copyright (c) Lumileds Lighting LLC Company
Lattice mismatch

Dislocations cause intra-gap states, and non-radiative recombination.

E. F. Schubert, LEDs, CUP, 2007
Choosing materials for heterostructures
Heterojunction band diagrams

Sec. 8.2

e.g., \(n\)-Al\(_{0.3}\)Ga\(_{0.7}\)As (\(E_g = 1.80\)eV, \(\chi = 3.83\)eV) on \(p\)-GaAs (\(E_g = 1.42\)eV, \(\chi = 4.07\)eV)

\[
E_g(x) = 1.424 + 1.247x \quad \text{eV}
\]

\[
\chi(x) = 4.07 - 0.79x \quad \text{eV}.
\]

Separated system

\(E_0, E_1 \)

\(\chi \)

\(E_C \)

\(E_F \)

\(E_V \)

Joined system

\(\bullet \) e-barrier < h-barrier
Example of P⁺pN⁺ heterostructure LED

Note notation!

Schubert, Ref. 8.2
Sec. 8.2

Current efficiency

From our toolbox

\[\frac{1}{q} \frac{dJ_e}{dx} - \frac{\Delta n}{\tau_e} = 0 \]

\[\int_0^H \frac{\Delta n}{\tau_e} \, dx = \int_0^H \frac{1}{q} \frac{dJ_e}{dx} \, dx \]

Current efficiency

\[\eta_C = \]