HBT small-signal analysis

1

LECTURE 16

- Base current
- DC equivalent circuit
- AC small-signal analysis
- Hybrid-π equivalent circuit
- Parasitic R and C in an HBT
- Capacitance in a BT

Base current: components

Base current components in active mode

• Which I_B components do we need to consider?

Sec. 9.3

Base current: recombination in base QNR

Sec. 9.3 Base current components and Gummel plot

DC Equivalent circuit

AC small-signal operation

Notation

Linearize

 $i_J(t) = I_J + i_j(t)$ J, j = 1, 2, 3,

Match the numbers to the terminals

Function of 2 variables

 $i_{2} = I_{2}(V_{21} + v_{21}, V_{31} + v_{31})$ $= I_{2}(V_{21}, V_{31}) + \frac{\partial I_{2}}{\partial V_{21}}v_{21} + \frac{\partial I_{2}}{\partial V_{31}}v_{31}$ $\equiv I_{2} + g_{22}v_{21} + g_{23}v_{31},$

Does the linearization set limits for the small signal?

Sec. 14.2

AC small-signal equivalent circuit

Hybrid-π equivalent circuit

Sec. 14.3

Capacitance

Generally:

$$C \equiv \frac{\partial Q}{\partial V}$$

Specifically:

$$C_{jk} = -\frac{\partial Q_j}{\partial V_k} \quad \text{if } j \neq k$$
$$C_{jk} = +\frac{\partial Q_j}{\partial V_k} \quad \text{if } j = k$$

Sec. **Emitter-base junction-storage capacitance** 12.3.1 **R** - \rightarrow \vdash \leftarrow W_{B2} **QNB** QNE QNC W_{B1} + ΔV_{BE}

- $\Delta Q_{E,j}$ is the change in charge entering the device through the emitter and creating the new width of the depletion layer (narrowing it in this example),
- \bullet in response to a change in V_{BE} (with E & C at AC ground).
- It can be regarded as a parallel-plate cap.

What is the voltage dependence of this cap?

• $\Delta Q_{E,b}$ is the change in charge entering the device through the emitter and resting in the base (the black electrons),

11

- \bullet in response to a change in V_{BE} (with E & C at AC ground).
- It's not a parallel-plate cap, and we only count one carrier.

Emitter-base base-storage capacitance: evaluation

$$Q_{E,b}(V_{BE}) = -q \frac{1}{2} W_B A \left[n_{0p} \exp(\frac{V_{BE}}{V_{th}}) - n(W_B) \right] - q W_B A n(W_B)$$

Take $\frac{\Delta Q_{E,b}}{\Delta V_{BE}} \rightarrow \frac{d Q_{E,b}}{d V_{BE}}$
Hence $C_{EB,b}$

$$\frac{n(0, V_{BE1}) = n_{0p} \exp(V_{BE1} / V_{th})}{n(0, V_{BE2}) = n_{0p} \exp(V_{BE2} / V_{th})}$$

What is the voltage dependence of $C_{EB,b}$?