HBTs: high-frequency attributes

1

LECTURE 17

- Recapitulation of equivalent circuits
- Two components of Emitter-Base capacitance
- Figures of merit
- f_T : definition and derivation
- Design for high f_T
- f_{max}: definition and derivation
- Design for high f_{max}

Sec. 9.4

DC Equivalent circuit

$$J_e = -qn_{0B} \left[e^{qV_{BE}/kT} - e^{qV_{BC}/kT} \right] \left[\frac{W_B}{D_e} + \frac{1}{v_R} \right]^{-1}$$

$$I_{B,\text{rec}} = Aqn_{0B} \left[\left(e^{V_{BE}/V_{\text{th}}} - 1 \right) + \left(e^{V_{BC}/V_{\text{th}}} - 1 \right) \right] \left\{ \frac{1}{\frac{2\tau_e}{W_B} + \frac{1}{2v_R}} \right\}$$

AC small-signal equivalent circuit

Sec. 14.2

Hybrid-π equivalent circuit

Sec. 14.3

Sec. **Emitter-base junction-storage capacitance** 12.3.1 **R** - \rightarrow $\stackrel{!}{\leftarrow}$ W_{B2} **QNB** QNE QNC W_{B1} + ΔV_{BE}

- $\Delta Q_{E,j}$ is the change in charge entering the device through the emitter and creating the new width of the depletion layer (narrowing it in this example),
- \bullet in response to a change in V_{BE} (with E & C at AC ground).
- It can be regarded as a parallel-plate cap.

What is the voltage dependence of this cap?

• $\Delta Q_{E,b}$ is the change in charge entering the device through the emitter and resting in the base (the black electrons),

- \bullet in response to a change in V_{BE} (with E & C at AC ground).
- It's not a parallel-plate cap, and we only count one carrier.

Emitter-base base-storage capacitance: evaluation

$$Q_{E,b}(V_{BE}) = -q \frac{1}{2} W_B A \left[n_{0p} \exp(\frac{V_{BE}}{V_{th}}) - n(W_B) \right] - q W_B A n(W_B)$$

Take $\frac{\Delta Q_{E,b}}{\Delta V_{BE}} \rightarrow \frac{d Q_{E,b}}{d V_{BE}}$
Hence $C_{EB,b}$

$$\frac{n(0, V_{BE1}) = n_{0p} \exp(V_{BE1} / V_{th})}{n(0, V_{BE2}) = n_{0p} \exp(V_{BE2} / V_{th})}$$

What is the voltage dependence of $C_{EB,b}$?

HF figures of merit

Represent transistor by its small-signal equivalent circuit

Consider frequency dependence of some current gain

Consider frequency dependence of some power gain

What are the associated figures of merit?

f_T from hybrid-pi equivalent circuit

f_T is measured under
AC short-circuit
conditions.

- We seek a solution for |ic/ib|² that has a single-pole roll-off with frequency.
- Why?
- Because we wish to extrapolate at -20 dB/decade to unity gain.

• Assumption: $i_b R_e \ll i_c (R_e + R_c)$

• Conditions:

• Extrapolated f_T:

Improving f_T

$$2\pi f_T = \frac{g_m}{C_\pi + C_\mu (1 + g_m R_{ec})}$$

11

- III-V for high g_m
- Highly doped sub-collector and supra-emitter to reduce R_{ec}
- Dual contacts to reduce R_c and R_B
- Lateral shrinking to reduce C's

What is required to get $f_T > 200 \text{ GHz}$?

Circuit for derivation of f_{max}

Developing an expression for fmax

Sec. 14.6

Conjugately match at the output

$$\Re(Z_{\rm Th}) \approx \frac{C_T}{C_\mu g_m} \qquad \qquad P_{\rm out,max} = \frac{|v_{\rm Th}|^2}{4\Re(Z_L)} \approx \frac{|v_{\rm in}|^2}{4R_b^2} \frac{g_m}{\omega^2 C_\mu C_T}$$

Conjugately match at the input

$$P_{\rm in,max} = \frac{|v_S|^2}{4\Re(Z_{\rm in})} = \frac{|v_{\rm in}|^2}{R_b}$$

Improving f_{max}

-∕--h21 MSG/MAG $V_{CE} = 0.907 V$ $V_{CB} = 0 V$ $f_{\rm T} = 604 \, {\rm GHz}$ $J_{o} = 16.82 \text{ mA/um}^{2}$ 10 -20 dB/decade f...... = 246 GHz 0 0.1 10 100 1000 1 Frequency (GHz)

Base-spreading resistance

$$\begin{aligned} P_{\text{left}}(y) &= I_B(y)^2 R\\ P_{\text{left}} &= \int_0^h \frac{I_B^2}{4} \left(1 - \frac{y}{h}\right)^2 \frac{\rho \, dy}{A} \end{aligned}$$

What is rho?

$$P = \frac{I_B^2}{12} R_{B,QNB} \equiv I_B^2 R_{B,sp}$$

What is R_{B,QNB}?

Do you now see why HBTs have helped enable portable wireless products?