MOSFETs for digital logic

1

LECTURE 20

- Summary of PSP and SPICE models
- Threshold voltage
- Body-effect coefficient
- Effective mobility
- Effect of velocity saturation on I-V characteristic
- Sub-threshold current
- CMOS digital logic

Comparison of PSP and SPICE

- SPICE LEVEL 1 has the correct form for the drain characteristic, but is not very accurate.
- However, its use of V_T is very helpful in formulating a simple algorithm for MOSFET operation.

MOSFET model summary

PSP:

- Gradual Channel Approximation enables solution of Poisson to get Q_s
- Use Q=CV to get another expression for Q_s
- Equate and get implicit expression for ϕ_s (V_{GB}, V_{DB}, V_{SB})
- Charge Sheet Approximation no $\Delta V(\mathbf{y})$ across channel ϕ_s due to Q_b use DA
- DDE for I_D
- Predicts exponential-dependence on V_{GB} at low bias and weaker dependence at higher V_{GB}.
- It is a model for all conditions

SPICE:

- 1. Assumes channel is strongly inverted everywhere. This is not true at the drain for moderate and high V_{DS} , so the model only works in the triode regime ($V_{DS} \leq V_{GS} V_T$).
- 2. Patch-up the model by assuming I_D saturates at the `breakdown' point.
- 3. LEVEL 1 assumes $v_d = \mu E_x$. So I_D is overestimated at high E_x .
- 4. LEVEL 49 limits v_d to v_{dsat} , so it gives more a more realistic I_D .
- 5. $I_D(SPICE) > I_D(PSP)$ because of strong inversion assumption.
- 6. SPICE gives us V_T the `long-channel' threshold voltage, which is a widely used metric.
- 7. Our SPICE models only work for $V_{GS} > V_T$, i.e., when the FET is ON.

Threshold voltage

$$V_T = V_{fb} + 2\phi_B + \gamma\sqrt{2\phi_B + V_{SB}}$$

$$-V_{\rm fb} = V_{bi}^{\rm MOS} = \frac{\Phi_S - \Phi_G}{q}$$

$$n_i e^{-q\phi_B/kT} = \frac{n_i^2}{N_A}$$

 $\gamma = \sqrt{2q\epsilon_s N_A}/C_{ox}$

 V_T is the V_{GS} at which the surface is strongly inverted at the source end of the channel,

i.e.,

$$\psi_s(0) =$$

 $\begin{array}{l} Information \ on \ CMOS65 \ process: \\ V_T = & \\ t_{ox} = 1.7 \ \mathrm{nm}; \\ \epsilon_{ox} = 3.9 \epsilon_0; \\ N_A = 2.6 \times 10^{18} \ \mathrm{cm}^{-3}; \\ \mu_{\mathrm{eff}} = 600 \ \mathrm{cm}^2 (\mathrm{Vs})^{-1}; \\ v_{sat} = 12 \times 10^6 \ \mathrm{cm/s}; \end{array}$

Exercise: Evaluate V_T

Body-effect coefficient

m came from the binomial expansion of the drift part of the PSP expression for drain current.

Effectively, it s for the fact that a change in charge on the gate does not translate into an equal change in charge in the channel, because there is also some charge change in the body.

$$I_D = ZC_{ox} \left[V_{GS} - V_T - \underbrace{m \frac{V_{DS}}{2}}_{2} \right] \cdot \mu_{\text{eff}} \frac{V_{DS}}{L}$$

$$m = 1 + \frac{\gamma}{2\sqrt{2\phi_B + V_{SB}}}$$

$$\gamma = \sqrt{2q\epsilon_s N_A}/C_{ox}$$

$$I_D = ZC_{ox} \left[V_{GS} - V_T - m \frac{V_{DS}}{2} \right] \underbrace{\mu_{\text{eff}}}_L \frac{V_{DS}}{L}$$

The effective mobility in the channel is different from the low-field electron mobility in the bulk because of 2 reasons.

Secs.

SPICE Level 49: allowing for v_{sat}

Integrate:

$$I_D = ZC_{ox} \left[V_{GS} - V_T - m \frac{V_{DS}}{2} \right] \cdot \mu_{\text{eff}} \frac{V_{DS}}{L + (\mu_{\text{eff}} V_{DS} / v_{\text{sat}})}$$

Comparison of SPICE Levels 1 and 49

What is the conclusion from this?

Sec.

10.4.5

Secs. 10.5, 13.1.10

Sub-threshold current

Inverse sub-threshold slope is the gate bias required to reduce $I_{D, subT}$ by 10

$$S = \left(\frac{\partial \log_{10} I_D}{\partial V_{GS}}\right)^{-1} \equiv 2.303 m V_{\rm th}$$

What does V_T have to be for $I_{OFF}/I_{ON}=10^{-4}$?

Sec. 13.0

OFF current and DRAM storage time

How long will it take to discharge $C_{st} = 1pF$ to $V_{DS} = 0.5V$ when the Bit line is LO and the NFET (Z=100 nm) is supposed to be OFF?

Chap. 13

Si CMOS: why is it dominant for digital?

For about 40 years (1963-2003), steady improvements in speed were accomplished by:

- reducing L and V_T to increase I_{ON}
- reducing L and Z to decrease C_{FET}
- can these trends continue?

12