High performance CMOS

1

LECTURE 21

- MOSFET scaling
- short-channel effect
- shallow S & D, halos, SOI
- strain engineering and mobility

Logic speed is about Q and I

Sec.

13.0

Co-ordinated scaling

** "long-channel" threshold voltage

		CMOS3	CMOS180	CMOS130	CMOS90	CMOS65	CMOS45	CMOS32
		1987	2001	2002	2003	2005	2008	2011
L	nm	3000	180	130	90	65	45	32
YJ	nm	1000	160	39	28	19.6	14	11
тох	nm	85	4.1	2.8	2.3	1.85*	1.75*	1.65*
NCH	cm ⁻³	1.00E+16	3.90E+17	6.15E+17	8.37E+17	2.54E+18	3.24E+18	4.12E+18
VDD	V	5.0	1.8	1.2	1.0	1.0	1.0	1.0
VT**	V	0.95	0.47	0.35	0.24	0.42	0.47	0.51

* based on relative permittivity of 3.9CMOS65/45/32 from http://ptm.asu.edu/

CMOS: the Industrial drive

CMOS Device Scaling Demonstration

Shrinking L no longer helps much for I_{Dsat}

$$I_{Dsat} = ZC_{ox}(V_{GS} - V_T) \cdot v_{sat} \frac{\sqrt{1 + 2\mu_{eff}(V_{GS} - V_T)/(mv_{sat}L)} - 1}{\sqrt{1 + 2\mu_{eff}(V_{GS} - V_T)/(mv_{sat}L)} + 1}$$

3 major concerns for digital CMOS

$$I_{Dsat} = ZC_{ox}(V_{GS} - V_T) \cdot v_{sat} \frac{\sqrt{1 + 2\mu_{eff}(V_{GS} - V_T)/(mv_{sat}L)} - 1}{\sqrt{1 + 2\mu_{eff}(V_{GS} - V_T)/(mv_{sat}L)} + 1}$$

Concerns:

- \bullet L cannot be further reduced without adversely affecting $V_{\rm T}$ and $I_{\rm subt}$
- \bullet Some other way needs to be found to increase $I_{\rm ON}$
- TOX cannot be further reduced without causing excessive gate leakage current

Solutions:

- 1. Controlling V_T and I_{subt} via suppression of the short-channel effect
- 2. Increasing I_{ON} via mobility improvement
- 3. Reducing gate leakage via thicker, high*k* dielectrics

1,2 started at CMOS903 is new to

CMOS45

Moving More Charge in Less Time

Sec. 13.1.7

Which model parameter is changing?

The Short-Channel Effect

- \bullet The change in characteristics with y_{j} occurs at short L.
- At short L, the characteristics also change with L.
- These changes are known as the
- They indicate a change in $\Psi_s(0)$ due to V_{DS} .

Why is this undesirable?

What can be done to avoid it?

The Short-Channel Effect and Capacitance

$$\psi_{s} = f(L, y_{j}, V_{DS})$$
 $\therefore V_{T} = f(L, y_{j}, V_{DS})$

How is source-to-channel barrier height affected?

 ψ_{s} is determined by capacitive coupling via C_{ox} and C_{body} , **AND** by capacitive coupling via C_{DS} 11

Loke et al., 12-Mar-2008

Reduce C_{DS} by shrinking y_j

Reduce C_{DS} by screening E_x

Loke et al., 12-Mar-2008

Strain engineering: improving μ

Apply stress in <110> to a (100) surface.

Sec.

13.1.3

- k_1 is a <110> direction
- k_2 and k_3 are orthogonal at the point of the energy minimum E_C

Which direction has the higher effective mass?

Sec. 13.1.3

Conductivity effective mass m_c*

Electron accelerates in field *E* and reaches v_d on next collision after time τ τ v=0 $v=v_d$

$$F = ma \approx \frac{mv_d}{\tau} = qE$$
$$u = \frac{v_d}{E} \equiv \frac{q\tau}{m_c^*}$$

What happens when Si is tensioned?

$$J = \sigma E = qn \,\mu E = \frac{q^2 n \tau}{m_c^*} E$$
$$\sigma = q^2 \tau \frac{n}{6} \left[\frac{2}{m_r^*} + \frac{4}{m_t^*} \right]$$
$$\sigma = q^2 n \tau \left\{ \frac{1}{3} \left[\frac{1}{m_r^*} + \frac{2}{m_t^*} \right] \right\}$$

For unstrained $\{001\}$ Si: $m_C^* = 0.26m_0$ What is this mass called?

Strained Si at the 45nm node

Compressive for P-FETs

High stress film

Tensile for N-FETs

How much stress is involved?

Thompson et al., Refs. 13.4, 13.5

What a factor of 2 in μ brings

This is a 50 nm FET.

Sec.

13.1.2

Why is I_{Dsat} not directly proportional to μ ?