Semiconductor Memory

LECTURE 23

- memory organization
- memory-density trends
- flash memory
- DRAM

Chap. 15

Memory organization

Identify:

- Memory cells
- Word lines
- Bit lines
- Decoder
- MUX/DEMUX

Industry strives to make cells as as possible.

Sketch a MOST memory cell, showing word- and bit-line connections

Memory Density

Flash memory cell

What is the most significant difference from a regular MOSFET?

How is the cell programmed (written and erased)?

How is the cell read?

Charge on Floating Gate

Let Q_n =-4q represent inversion.

Enable word line.

Does the bit-line sense an I_D in (a) and/or (b)?

What is the difference in V_T in the two cases?

How is a ONE/ZERO interpreted?

Is the reading destructive?

Writing a 0

(a) Equilibrium

$$T \approx \exp\left[-\frac{2d}{\hbar}\sqrt{2m_2^*(U_2 - E)}\right]$$

Where did this expression come from?

Both oxides are too thick for

Apply large voltage. This enables FAT.

Electrons become trapped in the

Storing, and Erasing a 0

What happens to the stored charge if the power fails?

What's the polarity of the erase voltage?

http://www.toshiba.co.jp/about/press/2009_08/pr0401.htm

Toshiba to Launch the World's First SDXC Memory Card World's largest 64gigabyte (GB), with world's fastest transfer rate

How has TOSHIBA done this?

DRAM

Where is the charge stored?

What is the function of the MOSFET?

How is the cell read?

What is the condition of the bit-line during a READ operation?

Writing and Reading a ONE

WRITE:

Plate at VDD/2

Raise V_{Bit} to $VDD+V_{T}$

Enable word line.

What does V_S become?

What does V_{st} become?

READ:

Plate at VDD/2

Pre-charge V_{Bit} to VDD/2

Float V_{Bit}

Enable word line

Sense V_{Bit}

What does V_{Bit} become?

Writing and Reading a ZERO

WRITE:

Plate at VDD/2

What is V_{Bit} set to?

Enable word line.

What does V_S become?

What does V_{st} become?

READ:

Plate at VDD/2

Pre-charge V_{Bit} to VDD/2

Float V_{Bit}

Enable word line

Sense V_{Bit}

What does V_{Bit} become?

Does V_S change?

Why is this memory called "Dynamic"?

Sec. 13.1.10

Leakage currents

Another reason for frequent refreshing

- (1) Reverse Junction leakage current from the storage node
- (2) Gate Induced drain leakage (GIDL) current
- (3) Subthreshold leakage current of NMOS transistor

Sec. 13.1.10

Gate-Induced Drain Leakage (GIDL)

 Drain-to-substrate leakage due to band-to-band tunneling current in very high-field depletion region in drain overlap region

 Similar gate-induced source leakage (GISL) mechanism exists when source is raised above gate potential

Charge sharing

Basically, the DRAM works by altering the charge on the BIT line.

Therefore, is it required to make C_{st} as large or as small as possible?

DRAM-capacitor evolution

(a) MOS capacitor (4K)

(b) Planar capacitor (64K - 1M)

d) Stacked capacitor (4M –)

(e) Buried word line (4G –)

480 reunion at the Hofbrauhaus

