More CMOS and some Bipolar

1

LECTURE 24

- revisiting the DRAM
- CMOS camera
- BJT logic
- ECL
- high-frequency performance comparison

Writing and Reading a ONE

Writing and Reading a ZERO

Bit-line voltage changes during READ

www.ece.ucsb.edu/bears/class/ece224a/Lecture12dram.ppt

Written-State

$$Q = C_s (V_{sn} - V_{cp}) + C_b V_{bl}$$

"1" $V_{sn} = V_{ccs}$
"0" $V_{sn} = 0$

Precharge BL to $V_{bl} = V_{ccs} / 2$ Select WL with $V_{WL} > V_{ccs} + V_T^*$ $Q = C_s (V'_{bl} - V_{cp}) + C_b V'_{bl}$

$$\Delta V = V'_{BL} - V_{BL} = (V_{SN} - V_{BL}) \frac{C_s}{C_s + C_b}$$

$$\begin{split} \Delta V_{"1"} &= V'_{bl} - V_{bl} = \frac{1}{1 + C_b / C_s} \cdot \frac{V_{ccs}}{2} \\ \Delta V_{"0"} &= V'_{bl} - V_{bl} = -\frac{1}{1 + C_b / C_s} \cdot \frac{V_{ccs}}{2} \end{split}$$

DRAM-capacitor evolution

(a) MOS capacitor (4K)

(b) Planar capacitor (64K - 1M)

(c) Trench capacitor (1M - 1G)

(e) Buried word line (4G -)

CMOS camera

BJT Logic

Figure 11E.7 Determination of the dc operating point by the superposition of transistor characteristics and the load line. Three such points, for different base currents, are shown.

Switching OFF from saturation:

Switching OFF from active:

BJT equivalent circuit (large signal)

8

Figure 13.19 Large-signal equivalent circuit of the HBT . The collector current source is from Fig. 9.9.

Simplify and rotate

Sec. 13.2

Sec. 13.2

Why switching from saturation is slow

- Remove V_{BE}
- Depletion layers widen
- Holes flow OUT of base
- *i.e.*, I_B is reversed
- n(0) and n(W_B) decrease as V_i's decrease
- But dn/dx stays same
- \bullet So $\rm I_{\rm C}$ stays same
- Until $n(W_B) = n0$

Basics of ECL, a non-saturating logic

- R's and biases chosen so that Q's never saturate.
- Differential logic, so only a small swing in v_i needed for switching.
- ∴ ECL is very fast.

Figure 13.2 Examples of 2-input NOR gates. (a) in CMOS, (b) in HBT emitter-coupled logic (ECL). The latter has a higher transistor count because, in addition to the actual emitter-coupled switching element, level shifters and a current source are required. However, it should also be noted that the ECL gate shown does allow complementary outputs.

What are the drawbacks?

f_T and f_{max} : HBT *vs.* MOS

$$2\pi f_T = \frac{g_m}{C_\pi + C_\mu (1 + g_m R_{ec})}$$

$$f_{\rm max} = \sqrt{\frac{f_{\rm T,i}}{8\pi C_{\mu} R_b}}$$

What are the corresponding expressions for MOSFETs? Which is "better", HBT or MOSFET?