Band diagram, generation and recombination

1

LECTURE 4

- Energy band diagram
- Phonons
- Thermal generation of electrons and holes
- Chemical generation (doping)
- R-G-centre recombination
- Minority carrier lifetime

Sec. 2.12

Potential energy

Microscopically:

 $E_{CB}(k) = E_{C0} + \frac{\hbar^2 k^2}{2m^*}$

Physically, what is E_{C0} ?

Х

Sec. 2.12

Energy band diagram

Add in the macroscopic potential energy

$$E = U_M(x) + E_{C0} + \frac{\hbar^2 k^2}{2m^*}$$

= $E_C(x) + \frac{\hbar^2 k^2}{2m^*},$

- Electrons and holes reside in states
- Each state represents an energy and a crystal momentum
- Change in ħk is related to external forces

• $\hbar k(E) \equiv$

Chap. 2

in the parabolic-band approximation

• Each state identifies an allowable v(E) and KE

In the above energy band diagram, which is the faster electron and the faster hole?

Phonons

The atoms of a lattice vibrate about their mean positions. The vibrations are coupled.

Thermal generation of EHP's

Sec. 3.1.1

Chemical generation of electrons or holes

Sec. 3.1.4

Doping is the incorporation in the lattice of selected dopant atoms.		
Important vocabulary:		
Typically, doping densities ar	e cm ⁻³ .	
How many ppm is this?		

Sec. 3.1.4

Doping Semiconductors

Extrinsic carrier generation

Sec. 3.1.4

Generation and recombination via R-G centres

For p-type material:

 $R_{RG} = An$

 $G_{RG,th} = An_0$

Net rate of R-G-centre recombination: $U = R - R_0 \equiv R - G_{th,0}$

How does n differ from n_0 ?

What are the units of U?

Thermal equilibrium

Two conditions need to be satisfied:

