Thermal equilibrium, pn-junction

1

LECTURE 5

- Recombination-Generation centre recombination
- Conditions for thermal equilibrium
- Fermi-Dirac distribution function
- Fermi level
- Energy band diagram for *pn*-junction at equilibrium

"A" depends on the quality of material. For high-grade Si, A =

Generation and recombination via R-G centres

For p-type material:

 R_{RG} = An

 $G_{RG,th} = An_0$

Net rate of R-G-centre recombination: $U = R - R_0 \equiv R - G_{th,0}$

What is the significance of the different symbols: n and n_0 ?

What are the units of U?

Thermal equilibrium

Two conditions need to be satisfied:

Sec. 4.2

Filling states at equilibrium

 E_F is the Fermi (energy) level k_B is Boltzmann's constant

What is k_BT at 300K?

Sec. 4.2

Fermi-Dirac distribution function

$$f_{FD}(E) = \frac{1}{1 + \exp[(E - E_F)/k_B T]}$$

What is the probability of an electron occupying a state at $E=E_F$?

What is the probability of an electron occupying a state at E when $(E-E_F)=k_BT$?

What is the probability of an electron occupying a state at E when $(E-E_F)=10k_BT$?

View E_F as a

for electrons (or holes).

Identify the cases where the material is: n⁺, n, intrinsic, p, p⁺

- What is E_0 ?
- What material property is defined by E₀-E_C?
- What is the value for this property in Si?
- What does the energy band diagram look like when n-type and p-type materials are joined together?

np-junction band diagram: step 1

• Consider separate *n*- and *p*-material

Sec. 6.1.2

- All energies on the diagram are negative wrt E_0 .
- Construct the diagram in the order shown by the numbers.
- Leave a gap between the n- and p-regions
- The difference in E_F is a difference in chemical potential energy*.
- * Just as in a battery, it provides a driving force for mobile charges.

np-junction: equilibrium

Х

• Keep the *n*- and *p*-materials separate, but align the Fermi levels.

Sec. 6.1.2

- Construct the diagram in the order shown by the numbers.
- Where the vacuum level is displaced from it's zero-field value it is called the local vacuum level.
- The displacement defines the electrostatic potential.
- The overall potential difference at equilibrium is the built-in voltage.
- \bullet $E_{\rm F}$ is now the electrochemical potential energy.

Identify $-qV_{bi}$. Can it be measured? Join up E_C , E_V , and E_0 with smooth curves. Why smooth? Are there any charge flows in this case? What is the net current in this case?

Current balancing at equilibrium

Sec. 6.1

How many electrons flow from the n-side to the p-side? How many electrons flow from the p-side to the n-side? How can this lead to no net current?

Current bala at equilibr

Sec. 6.1

How many electrons flow from the n-side to the p-side? How many electrons flow from the p-side to the n-side? How can this lead to no net current?