Carrier concentrations and current

LECTURE 6

Density of states

Carrier concentrations at equilibrium
Maxwellians and hemi-Maxwellians
Current and energy gradients
Diffusion current

Drift current



Sec. 3.3 Density of states
1. Recall spacing of k-states in 1-D: k' = 25[” , (mn=0,£1,£2,£3,--)
N

How much k-space does a state occupy in 1-D?
How much k-space does a state occupy in 3-D?

How many states in the k-sphere?

2. Total volumetric density of states is the same whether
you integrate over E or |k|

f " G(E — Ec) d(E — Ec) — / o(k) dk
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3. Transform E to k. E—-E- = 5 [ ke y
2 {my  my

i A Y

4. Allow for different m*’s = — ,_
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6. Get g(E) B
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gc(E — Ec) = —53 (Mepos)™ (F — Ec)’® for E > Ec

What are the units?




Sec. 4.3 Equilibrium carrier concentrations
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These are formidable integrals as they involve E in square roots and in exponentials.

To simplify for electrons, for example, set the top of the band at

Why is it reasonable to do this?

The result 1s Ny = j\-‘}-fl __,.-2({}- j.')
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depends on and type.




Sec. 4.3 Maxwell-Boltzmann statistics

A very convenient approximation to Fy(ap) arises if ap <

Fipalap) — explap) ,

which then enables (4.10) to be written concisely as

Ep— b’,f-a)
Afj_g 1 '

ng = Ncexp (

This equation could have been derived directly using the Maxwell-Boltzmann distribution function.

fup(E) =

Physically, what is the difference between FD and MB statistics?




Sec. 4.3 Fermi-Dirac vs. Maxwell-Boltzmann
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- M-B works well for electrons if (Eq-Ep) >

“ie. ifny < 0.4 N

- We will use M-B for most of this course.

- N for Si at 300K is /cm’
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Dr. Ludwig Boltzmann (1844—1906)
Univ.-Prof.. Physiker, Philosoph




Full Maxwellian distribution 7 8( £)

Sec. 4.5 The hemi-Maxwellian

E—EE
e kT
 E-Ec+Eg—Ep
e KT
E-Eq
e kT

Electron concentration no( E ) = gc ( F ) fﬂ ( F )

Counter-propagating hemi-M's for n,=1E19/cm?

What is the current?

0.2

015}
>
0}
o 01f
n
L

0.05

05 0 05
9 (E)fyyg(E) eV lem™ /102

1




Sec. 4.5 Mean thermal speed and mean

unidirectional thermal velocity

Mean thermal speed Vip = Why is v,. # 0?
5 no(v) dv Y5 Yn
The result for the mean unidirectional velocity (for MB stats) is — Why is <v,># 07
What is it for a hemi-Maxwellian?

What is m*, ?




j,e;.z Current due to a hemi-Maxwellian

distribution
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Current cancellation at equilibrium in np-junction

Sec. 6.3
% v
Note the electron reservoirs (contacts). 3
5
Label the lines (ignore the stippled one). E. _
X
Why are the hemi-Maxwellians different sizes? 2
Why is the larger one only partly shaded? E
)
Identify the “drift” and “diffusion” currents
X

(<)
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Sec. 5.1

Current and energy

Current, the net flow of charge, is due to gradients in energy density.

Gradient in PE density — qn V l//

What are these

ts called?
V(nu) = nvu+uvn > | currents calle

Gradient in KE density




Sec.

. Diffusion current

What does this ad have to do with current in a
semiconductor?

The driving force in each case is a

gradient.

There's a net flow of electrons from I. - R

Even at equilibrium ?7?
4
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The diffusion current density is

—q% 20g + (—QJ% (—20R) = —@(T;l
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dx
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oo, Drift Current

The driving force in this case is the gradient. ﬁ — m*ad =+ q g _

e FElectrons accelerate

e Collisions occur
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These events disturb the distribution from that of a true Maxwellian, but if the disturbance is not too
great, we can still view the distribution as being very close to its equilibrium form, but with the FULL

MAXWELLIAN having a net velocity in the “direction” of the field, the

How does
this scrum
resemble a
displaced
Maxwellian?

velocity.



Sec.
551

Equilibrium:

n,=6.25616 /em®*—— 1§

Displaced Maxwellian
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* Mark v, on the graph

Drift current density:

'Ie,drift =

1

velocity distribution function fiv)

Je drift— + Je drift—
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What is the current
density in this
example?




