Carrier concentrations and current

1

LECTURE 6

- Density of states
- Carrier concentrations at equilibrium
- Maxwellians and hemi-Maxwellians
- Current and energy gradients
- Diffusion current
- Drift current

Sec. 3.3

Density of states

1. Recall spacing of k-states in 1-D: $k = \frac{2\pi n}{Na}$, $(n = 0, \pm 1, \pm 2, \pm 3, \cdots)$ k,

How much k-space does a state occupy in 1-D? How much k-space does a state occupy in 3-D? How many states in the k-sphere?

2. Total volumetric density of states is the same whether you integrate over E or |k|

$$\int_0^\infty g(E - E_C) \, d(E - E_C) = \int_0^\infty g(k) \, dk$$

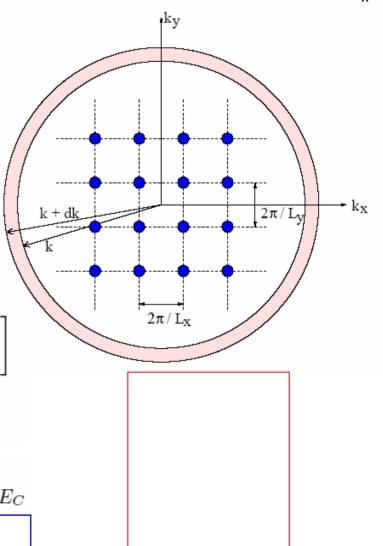
4. Allow for different m*'s

3. Transform E to k. $E - E_C = \frac{\hbar^2}{2} \left[\frac{k_x^2}{m_x^*} + \frac{k_y^2}{m_y^*} + \frac{k_z^2}{m_z^*} \right]$ $= \frac{\hbar^2}{2} \frac{k^2}{m^* \log} \,,$

6. Get g(E)

$$g_C(E - E_C) = \frac{8\pi\sqrt{2}}{h^3} (m_{e,\text{DOS}}^*)^{3/2} (E - E_C)^{1/2} \text{ for } E \ge E_C$$

What are the units?



Equilibrium carrier concentrations

$$n_0 = \int_{E_C}^{\text{top of band}} g_C(E) f_{FD}(E) dE$$

$$p_0 = \int_{\text{bottom of band}}^{E_V} g_V(E) dE$$

These are formidable integrals as they involve E in square roots and in exponentials.

To simplify for electrons, for example, set the top of the band at

Why is it reasonable to do this?

The result is

$$n_0 = N_C F_{1/2}(a_F)$$

where

and

and

$$N_{C} = 2 \left(\frac{2\pi m_{e,\text{DOS}}^{*} k_{B} T}{h^{2}} \right)^{3/2} \text{ is the } \text{ in the CB}$$
$$\mathcal{F}_{1/2}(a_{F}) \text{ is a } \text{ integral}$$
$$a_{F} = (E_{F} - E_{C})/k_{B}T. \text{ depends on } \text{ and type.}$$

Sec. 4.3

Maxwell-Boltzmann statistics

A very convenient approximation to $\mathcal{F}_{1/2}(a_F)$ arises if $a_F < \mathcal{F}_{1/2}(a_F) \to \exp(a_F)$,

which then enables (4.10) to be written concisely as

$$n_0 = N_C \exp\left(\frac{E_F - E_C}{k_B T}\right)$$

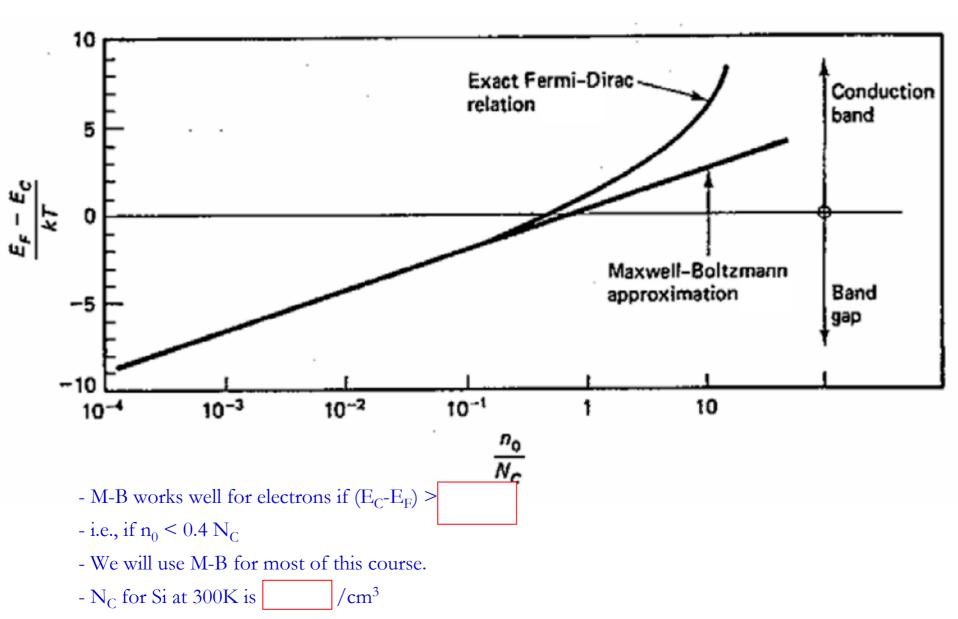
This equation could have been derived directly using the Maxwell-Boltzmann distribution function.

$$f_{MB}(E) =$$

Physically, what is the difference between FD and MB statistics?

Fermi-Dirac vs. Maxwell-Boltzmann

Sec. 4.3



Ludwig Boltzmann

Sec. 4.5

Full Maxwellian distribution
$$f_{MB}(E) = e^{-\frac{E-E_F}{kT}}$$

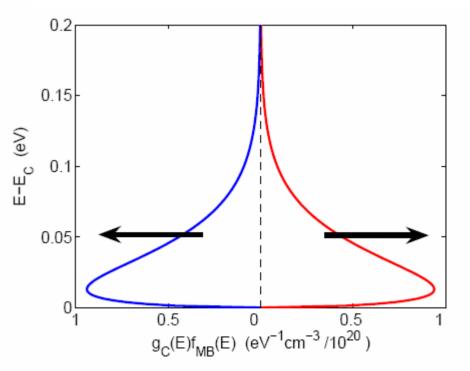
$$\equiv e^{-\frac{E-E_C+E_C-E_F}{kT}}$$

$$= e^{-\frac{E-E_C}{kT}} e^{-\frac{E-E_C}{kT}}.$$

Electron concentration $n_0(E) = g_C(E)f_0(E)$

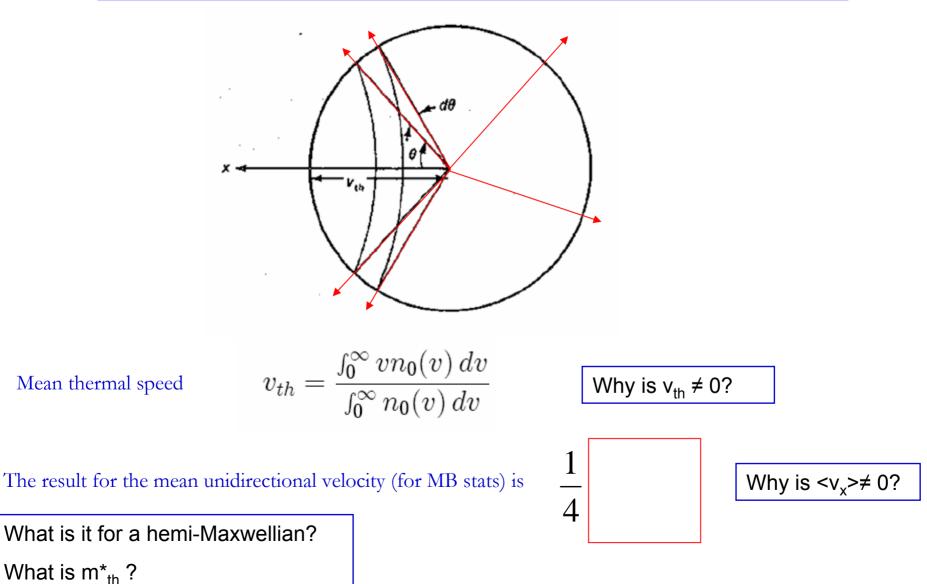
Counter-propagating hemi-M's for $n_0=1E19/cm^3$

What is the current?

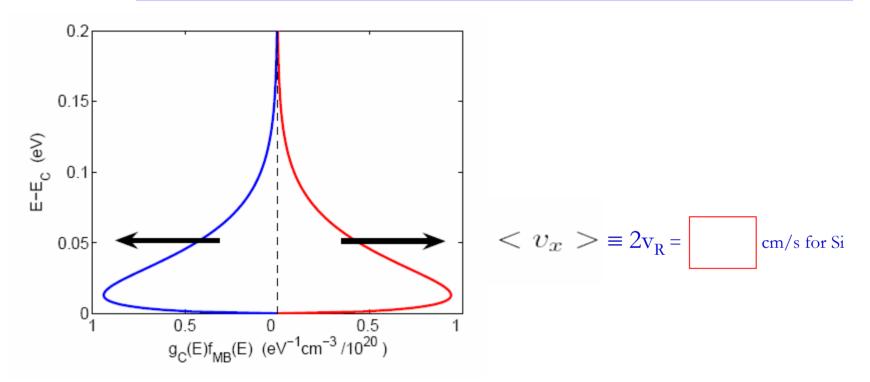


Mean thermal speed and mean unidirectional thermal velocity

Sec. 4.5



Current due to a hemi-Maxwellian distribution



$$\vec{J}_{e,\rightarrow} = -q \frac{n_0}{2} \qquad = \qquad A/cm^2 \text{ for } n_0 = 1E19 / cm^3$$
$$\vec{J}_{e,\text{total}} = ??$$

Current cancellation at equilibrium in np-junction

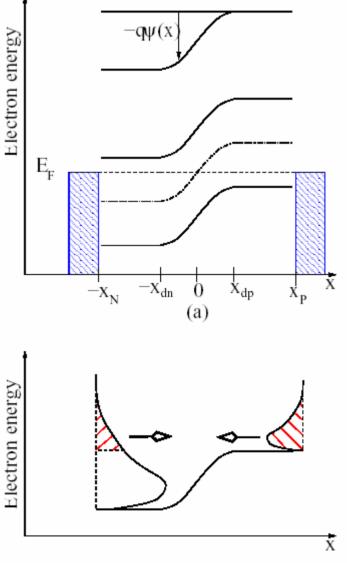
Sec. 6.3

Note the electron reservoirs (contacts). Label the lines (ignore the stippled one).

Why are the hemi-Maxwellians different sizes?

Why is the larger one only partly shaded?

Identify the "drift" and "diffusion" currents



Current and energy

Current, the net flow of charge, is due to gradients in energy density.

Gradient in PE density

$$-qn\nabla\psi$$

Gradient in KE density

$$\nabla(nu) \equiv n\nabla u + u\nabla n$$

What are these currents called?

Energy

Diffusion current

Х

 n_2

What does this ad have to do with current in a semiconductor?

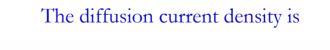
The driving force in each case is a gradient.

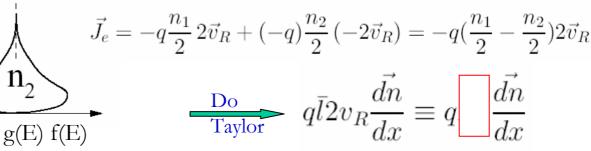
n

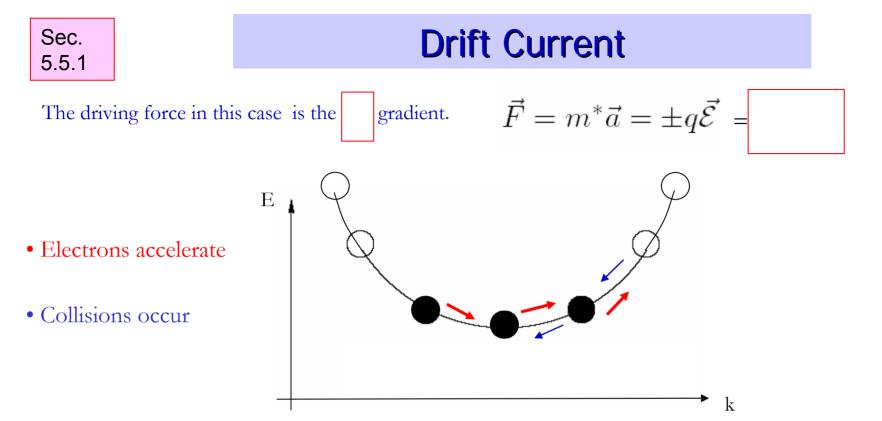
There's a net flow of electrons from $L \rightarrow R$

21

Even at equilibrium ??



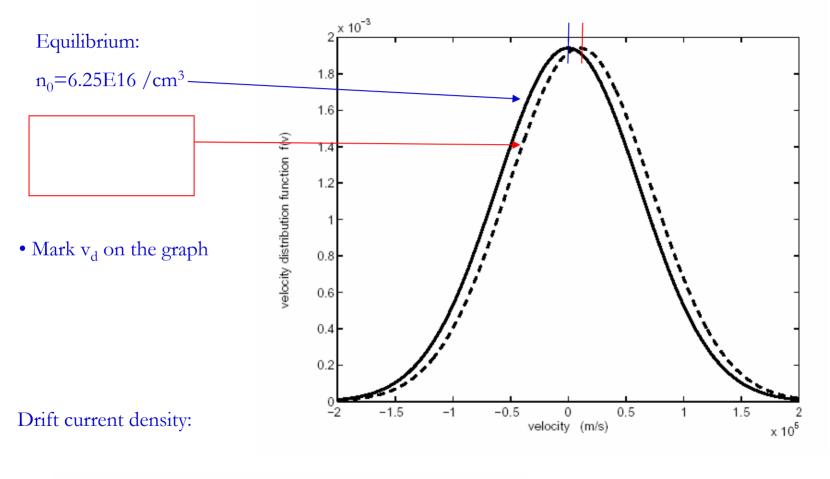




These events disturb the distribution from that of a true Maxwellian, but if the disturbance is not too great, we can still view the distribution as being very close to its equilibrium form, but with the FULL MAXWELLIAN having a net velocity in the "direction" of the field, the velocity.

How does this scrum resemble a displaced Maxwellian?

Displaced Maxwellian



$$\begin{aligned} \vec{J}_{e,\text{drift}} &= \vec{J}_{e,\text{drift}\rightarrow} + \vec{J}_{e,\text{drift}\leftarrow} \\ &= -q\frac{n}{2}\left(2\vec{v}_R + \vec{v}_{de}\right) + \left(-q\frac{n}{2}\left(-2\vec{v}_R + \vec{v}_{de}\right)\right) \\ &= \end{aligned}$$

What is the current density in this example?