The np junction diode under bias

LECTURE 8

- $n p$-junction under forward bias
- quasi-neutrality
- quasi-Fermi levels
- charge continuity equation
- master set of equations
- Shockley's Law of the Junction
- Ideal diode Equation

Note the polarity of V_{a}

$$
\begin{aligned}
& \psi\left(-x_{N}\right)-\psi\left(x_{P}\right)=V_{b i}+V_{a} \\
& E_{F}\left(-x_{N}\right)-E_{F}\left(x_{P}\right)=-q V_{a}
\end{aligned}
$$

Can we assume that

$$
\psi^{\prime}\left(-\mathrm{x}_{\mathrm{dn}}\right)-\psi\left(\mathrm{x}_{\mathrm{dp}}\right)=V_{b i}+V_{a} \quad ?
$$

Forward-bias current

(a)

(b)

- Net current is due to e-injection into p-region.

Why has W shrunk?

Quasi-Fermi levels

The two flows are huge

The difference can be large but \lll huge
\therefore we have a situation of quasi- \square
So, instead of THE Fermi-level, we define \square

$$
\begin{aligned}
& n=n_{i} \exp \left(\frac{E_{F n}-E_{F i}}{k_{B} T_{L}}\right) \\
& p=n_{i} \exp \left(\frac{E_{F i}-E_{F p}}{k_{B} T_{L}}\right)
\end{aligned}
$$

Forward-bias current

(a)

(b)

Recall:

$$
\begin{aligned}
& n=n_{i} \exp \left(\frac{E_{F n}-E_{F i}}{k_{B} T_{L}}\right) \\
& p=n_{i} \exp \left(\frac{E_{F i}-E_{F p}}{k_{B} T_{L}}\right)
\end{aligned}
$$

i.e., n,p are $f(Q F L s)$
and, via $\mathrm{E}_{\mathrm{Fi}}, \mathrm{f}(\psi)$.

What are the red and blue dashed lines?
What is their separation in the depletion region?

What is happening at the contacts?

Can we solve for n and p ?

So far we have 3 equations, but 5 unknowns!

$$
\begin{aligned}
-\nabla^{2} \psi & =\frac{q}{\epsilon}\left[p-n+N_{D}-N_{A}\right] \\
J_{e} & =-q n \mu_{e} \nabla \psi+q D_{e} \nabla n \\
J_{h} & =-q p \mu_{h} \nabla \psi-q D_{h} \nabla p
\end{aligned}
$$

Present BC's are:
$n=n_{0}$ and $p=p_{0}$ at the ends (OHMIC CONTACT)
$\psi\left(x_{P}\right)=0$
$E_{F n}\left(-x_{N}\right)-E_{F p}\left(x_{P}\right)=-q V_{a}$

2 more equations are needed, without introducing any more unknowns.

Continuity of charge

What is happening here?

What is the equation for the continuity of charge?

[^0]$U \equiv R-G_{t h}$
$U_{e} \equiv \frac{n-n_{0 p}}{\tau_{e}}$
$L_{e}=\sqrt{D_{e} \tau_{e}}$

The master equation set

This is our version of (5.24)

$$
\begin{aligned}
-\nabla^{2} \psi & =\frac{q}{\epsilon}\left[p-n+N_{D}-N_{A}\right] \\
J_{e} & =-q n \mu_{e} \nabla \psi+q D_{e} \nabla n \\
J_{h} & =-q p \mu_{h} \nabla \psi-q D_{h} \nabla p \\
\frac{\partial n}{\partial t} & =\frac{1}{q} \nabla \cdot J_{e}-\frac{n-n_{0}}{\tau_{e}} \\
\frac{\partial p}{\partial t} & =-\frac{1}{q} \nabla \cdot J_{h}-\frac{p-p_{0}}{\tau_{h}}
\end{aligned}
$$

J's are $\mathrm{f}(\mathrm{n}, \mathrm{p})$, so, essentially, we have
3 equations in 3 unknowns;
solve numerically.

Numerical solution

n / p diode
1E19/1E17 cm-3
0.02/2 micron
$\mathrm{V}_{\mathrm{a}}=-0.8 \mathrm{~V}$

- Note \square at left contact
- Note \square across the space-charge region

What happens to the QFLs at $x=2$ micron?

Sec. 6.5
 Shockley's Law of the J unction

The constancy of the QFL across the SCR leads to a very useful BC:

$$
n\left(x_{d p}\right)=\square
$$

The ideal-diode equation

- Pick a region in which to calculate the current.

Why choose the p-type QNR for J_{e} ?
Get the equations for this carrier from the Master Set

- Use General Solution
- Determine BC's

$$
\text { - Find } n(x)
$$

$$
\left.\left.\begin{array}{l}
\left\{\begin{aligned}
-\nabla^{2} \psi= & q\left[p-n+N_{D}-N_{A}\right] \\
J_{e} & =-q n \mu_{e} \nabla \psi+q D_{e} \nabla n \\
J_{h} & =-q p \mu_{h} \nabla \psi-q D_{h} \nabla p \\
\frac{\partial n}{\partial t}= & \frac{1}{q} \nabla \cdot J_{e}-\frac{n-n_{0}}{\tau_{e}} \\
\frac{\partial p}{\partial t}= & -\frac{1}{q} \nabla \cdot J_{h}-\frac{p-p_{0}}{\tau_{h}}
\end{aligned}\right. \\
n(x)-n_{0 p}=A e^{x / L_{e}}+B e^{-x / L_{e}} \\
n\left(x_{P}\right) \equiv n(\infty)=n_{0 p} \\
n\left(x_{d p}\right)=n_{0 p} e^{-V_{a} / V_{\mathrm{th}}}
\end{array}\right\} \begin{array}{l}
J_{e}\left(x_{d p}\right)=-q n_{0 p}\left(e^{-V_{a} / V_{\mathrm{th}}}-1\right) \cdot \frac{D_{e}}{L_{e}}
\end{array}\right\}
$$

- Calculate $\mathrm{J}_{\mathrm{e}}\left(\mathrm{x}_{\mathrm{dp}}\right)$
- Infer $\mathrm{J}_{\mathrm{h}}\left(-\mathrm{x}_{\mathrm{dn}}\right)$
- Sum the currents (is this OK?)

$$
\begin{aligned}
J & =-q\left(n_{0 p} \frac{D_{e}}{L_{e}}+p_{0 n} \frac{D_{h}}{L_{h}}\right)\left(e^{-V_{a} / V_{\text {th }}}-1\right) \\
& \equiv J_{00}\left(e^{-V_{a} / V_{\text {th }}}-1\right),
\end{aligned}
$$

Bipolar conduction

What is going on here?

[^0]: What are T_{e} and L_{e} ?

