Department of Electrical and Computer Engineering UNIVERSITY OF BRITISH COLUMBIA

EECE 480—SEMICONDUCTOR DEVICES

MIDTERM EXAM (October 19, 2004)

Time: 75 minutes **ANSWER PARTS 1 AND 2, AND ONLY ONE OF 3 OR 4.** This exam has 2 pages. All parts have equal weight. No notes, calculators, or books allowed.

1. Short answer questions:

- (a) Specify the units for:
 - i. the permittivity of free space, ϵ_0 ;
 - ii. the mobility, μ ;
 - iii. the diffusivity, D;
 - iv. Planck's constant, h;
 - v. potential energy;
 - vi. potential.
- (b) Provide a description of what each of the following represents:
 - i. f_T ;
 - ii. f_{\max} ;
 - iii. $\psi^*\psi$, where ψ is the wavefunction;
 - iv. m^* .
- (c) Sketch the one-dimensional dispersion relation for a particle under the effective-mass approximation.
- (d) The drift-diffusion and continuity equations in a bulk semiconductor are:

$$\begin{aligned} \mathbf{J}_h &= \alpha_1 q p \mu_h \mathcal{E} + \alpha_2 q D_h \nabla p \\ \mathbf{J}_e &= \alpha_3 q n \mu_e \mathcal{E} + \alpha_4 q D_e \nabla n \\ \frac{\partial p}{\partial t} &= \alpha_5 \frac{1}{q} \nabla \cdot \mathbf{J}_h + \alpha_6 U \\ \frac{\partial n}{\partial t} &= \alpha_7 \frac{1}{q} \nabla \cdot \mathbf{J}_e + \alpha_8 U \,, \end{aligned}$$

where each α has unity magnitude. What are the signs of each α ?

2. Diodes:

Consider three *p*-*n* diodes with "long" *p* and *n* regions. The doping on the *n*-side is 10^{16} cm^{-3} for each diode, and their physical dimensions are identical. The doping on the *p*-side is:

- 10^{18} cm^{-3} for Diode A;
- $10^{17} \,\mathrm{cm}^{-3}$ for Diode B;
- $10^{16} \mathrm{cm}^{-3}$ for Diode C.

Without resorting to detailed calculations:

- (a) which diode has the highest breakdown voltage, and why?
- (b) for a particular on-current, which diode requires the highest applied voltage, and why?
- (c) which diode has the shortest time for switching off, and why?
- (d) which diode has the largest parasitic series resistance, and why?
- (e) sketch the equilibrium energy band diagrams for each diode. Be sure to clearly show any differences between your diagrams.

3. Option #1—BJTs:

- (a) Discuss the effect of vertical and lateral shrinking on f_T and f_{max} in a real BJT.
- (b) Discuss basewidth modulation, and whether you would either suppress or enhance this effect in order to obtain better device performance in a single-stage, linear amplifier. What design choices could you make in order to achieve this goal? Be sure to indicate any negative side-effects of your design choices, if any.

4. Option #2—Deep, deep submicron BJTs:

- (a) For extremely short basewidth BJTs in the active mode:
 - i. specify, in words, equations, and/or pictures, appropriate conditions on the electron concentrations, velocities, and currents;
 - ii. under what specific conditions does the final result for the current density reduce to the familiar Shockley expression?
- (b) Sketch the current density as a function of basewidth, and compare it to the predictions of the Shockley theory.