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Recursive Identification

There are many situations when it is preferable to perform the
identification on-line, such as in adaptive control.
Identification methods need to be implemented in a recursive fashion, i.e.
the parameter estimate at time t should be computed as a function of the
estimate at time t−1 and of the incoming information at time t.

Recursive least-squares.

Recursive instrumental variables.

Recursive extended least-squares and recursive maximum likelihood.
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Recursive Least-Squares

Recursive Least-Squares (RLS)

We have seen that, with t observations available, the least-squares estimate is

θ̂(t) = [XT(t)X(t)]−1XT(t)Y(t)

with
YT(t) = [ y(1) · · · y(t)]

X(t) =

 xT(1)
...

xT(t)


Assume one additional observation becomes available, the problem is then to
find θ̂(t +1) as a function of θ̂(t) and y(t +1) and u(t +1).
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Recursive Least-Squares

Recursive Least-Squares (RLS)

Defining X(t +1) and Y(t +1) as

X(t +1) =
[

X(t)
xT(t +1)

]
Y(t +1) =

[
Y(t)

y(t +1)

]
and defining P(t) and P(t +1) as

P(t) = [XT(t)X(t)]−1 P(t +1) = [XT(t +1)X(t +1)]−1

one can write

P(t +1) = [XT(t)X(t)+ x(t +1)xT(t +1)]−1

θ̂(t +1) = P(t +1)[XT(t)Y(t)+ x(t +1)y(t +1)]
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Recursive Least-Squares Matrix Inversion Lemma

Matrix Inversion Lemma

Let A, D and [D−1 +CA−1B] be nonsingular square matrices. Then A+BDC
is invertible and

(A+BDC)−1 = A−1−A−1B(D−1 +CA−1B)−1CA−1

Proof The simplest way to prove it is by direct multiplication

(A+BDC)(A−1−A−1B(D−1 +CA−1B)−1CA−1)

= I +BDCA−1−B(D−1 +CA−1B)−1CA−1

−BDCA−1B(D−1 +CA−1B)−1CA−1

= I +BDCA−1−BD(D−1 +CA−1B)(D−1 +CA−1B)−1CA−1

= I
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Recursive Least-Squares Matrix Inversion Lemma

Matrix Inversion Lemma

An alternative form, useful for deriving recursive least-squares is obtained
when B and C are n×1 and 1×n (i.e. column and row vectors):

(A+BC)−1 = A−1− A−1BCA−1

1+CA−1B

Now, consider

P(t +1) = [XT(t)X(t)+ x(t +1)xT(t +1)]−1

and use the matrix-inversion lemma with

A = XT(t)X(t) B = x(t +1) C = xT(t +1)

Guy Dumont (UBC EECE) EECE 574 - Adaptive Control January 2010 6 / 21



Recursive Least-Squares RLS Algorithm

Recursive Least-Squares (RLS)

Some simple matrix manipulations then give the recursive least-squares
algorithm:

RLS

θ̂(t +1) = θ̂(t)+K(t +1)[y(t +1)− xT(t +1)θ̂(t)]

K(t +1) =
P(t)x(t +1)

1+ xT(t +1)P(t)x(t +1)

P(t +1) = P(t)− P(t)x(t +1)xT(t +1)P(t)
1+ xT(t +1)P(t)x(t +1)

Note that K(t +1) can also be expressed as

K(t +1) = P(t +1)x(t +1)
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Recursive Least-Squares RLS Algorithm

Recursive Least-Squares (RLS)

The recursive least-squares algorithm is the exact mathematical
equivalent of the batch least-squares.

Once initialized, no matrix inversion is needed.

Matrices stay the same size all the time.

Computationally very efficient.

P is proportional to the covariance matrix of the estimate, and is thus
called the covariance matrix.

The algorithm has to be initialized with θ̂(0) and P(0). Generally, P(0)
is initialized as αI where I is the identity matrix and α is a large positive
number. The larger α , the less confidence is put in the initial estimate
θ̂(0).
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Recursive Least-Squares RLS Algorithm

RLS and Kalman Filter

There are some very strong connections between the recursive least-squares
algorithm and the Kalman filter. Indeed, the RLS algorithm has the structure
of a Kalman filter:

θ̂(t +1)︸ ︷︷ ︸
new

= θ̂(t)︸︷︷︸
old

+K(t +1) [y(t +1)− xT(t +1)θ̂(t)]︸ ︷︷ ︸
correction

where K(t +1) is the Kalman gain.
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Recursive Least-Squares RLS Algorithm

Matlab Implementation

The following Matlab code is a straightforward implementation of the RLS
algorithm:

function [thetaest,P]=rls(y,x,thetaest,P)
% RLS
% y,x: current measurement and regressor
% thetaest, P: parameter estimates and covariance matrix
K= P*x/(1+x’*P*x); % Gain
P= P- (P*x*x’*P)/(1+x’*P*x); % Covariance matrix update
thetaest= thetaest +K*(y-x’*thetaest); %Estimate update
end
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RELS, AML and RML RELS and AML

Recursive Extended Least-Squares and Recursive
Maximum-Likelihood

Because the prediction error is not linear in the C-parameters, it is not possible to
derive an exact recursive maximum likelihood method as for the least-squares
method.

The ARMAX model

A(q−1)y(t) = B(q−1)u(t)+C(q−1)e(t)

can be written as
y(t) = xT(t)θ + e(t)

with

θ = [a1, . . . ,an,b1, . . . ,bn,c1, . . . ,cn]T

xT(t) = [−y(t−1), . . . ,−y(t−n),u(t−1),
. . . ,u(t−n),e(t−1), . . . ,e(t−n)]T
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RELS, AML and RML RELS and AML

Recursive Extended Least-Squares and Approximate
Maximum-Likelihood

If e(t) was known, RLS could be used to estimate θ , however it is
unknown and thus has to be estimated.

It can be done in two ways, either using the prediction error or the
residual.

The first case corresponds to the RELS method, the second to the AML
method.

Guy Dumont (UBC EECE) EECE 574 - Adaptive Control January 2010 12 / 21



RELS, AML and RML RELS and AML

Recursive Extended Least-Squares and Approximate
Maximum-Likelihood

The one-step ahead prediction error is defined as

ε(t) = y(t)− ŷ(t | t−1)
= y(t)− xT(t)θ̂(t−1)

x(t) = [−y(t−1), . . . ,u(t−1), . . . ,ε(t−1), . . . ,ε(t−n)]T

The residual is defined as

η(t) = y(t)− ŷ(t | t)
= y(t)− xT(t)θ̂(t)

x(t) = [−y(t−1), . . . ,u(t−1), . . . ,η(t−1), . . . ,η(t−n)]T
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RELS, AML and RML RELS and AML

Recursive Extended Least-Squares and Approximate
Maximum-Likelihood

Sometimes ε(t) and η(t) are also referred to as a-priori and a-posteriori
prediction errors.

Because it uses the latest estimate θ̂(t), as opposed to θ̂(t−1) for ε(t),
η(t) is a better estimate, especially in transient behaviour.

Note however that if θ̂(t) converges as t −→ ∞ then η(t)−→ ε(t).
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RELS, AML and RML RELS and AML

Recursive Extended Least-Squares and Approximate
Maximum-Likelihood

The two schemes are then described by

θ̂(t +1) = θ̂(t)+K(t +1)[y(t +1)− xT(t +1)θ̂(t)]
K(t +1) = P(t +1)x(t +1)/[1+ xT(t +1)P(t)x(t +1)]

P(t +1) = P(t)− P(t)x(t +1)xT(t +1)P(t)
[1+ xT(t +1)P(t)x(t +1)]

but differ by their definition of x(t)
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RELS, AML and RML RELS and AML

Recursive Extended Least-Squares and Approximate
Maximum-Likelihood

The RELS algorithm corresponds uses the prediction error. This
algorithm is called RELS, Extended Matrix or RML1 in the literature. It
has generally good convergence properties, and has been proved
consistent for moving-average and first-order auto regressive processes.
However, counterexamples to general convergence exist, see for example
Ljung (1975).

The AML algorithm uses the residual error. The AML has better
convergence properties than the RML, and indeed convergence can be
proven under rather unrestrictive conditions.
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RELS, AML and RML RML

Recursive Maximum-Likelihood

The ML can also be interpreted in terms of data filtering.

Consider the performance index:

V(t) =
1
2

t

∑
i=1

ε
2(i)

with ε(t) = y(t)− xT(t)θ̂(t−1)

Define the filtered regressor xf (t) as

xf (t) =
1

Ĉ(q−1)
x(t)

Requires initialization and a stable Ĉ(q−1).
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RELS, AML and RML RML

Recursive Maximum-Likelihood

The resulting scheme is then:

θ̂(t +1) = θ̂(t)+K(t +1)[y(t +1)− xT(t +1)θ̂(t)]

K(t +1) =
P(t +1)xf (t +1)

[1+ xT
f (t +1)P(t)xf (t +1)]

P(t +1) = P(t)−
P(t)xf (t +1)xT

f (t +1)P(t)

[1+ xT
f (t +1)P(t)xf (t +1)]

No global convergence result available
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RELS, AML and RML Properties of AML

Properties of AML

Definition
A discrete transfer function is said to be strictly positive real if it is stable and

ReH(ejω) > 0 ∀ω−π < ω ≤ π

on the unit circle.

This condition can be checked by replacing z by 1+jω
1−jω and extracting the real

part of the resulting expression.

For the convergence of AML, the following theorem is then available.
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RELS, AML and RML Properties of AML

Properties of AML

Theorem (Ljung & Söderström, 1983))
Assume both process and model are described by ARMAX with order model ≥ order
process, then if

1 {u(t)} is sufficiently rich

2 1
C(q−1) −

1
2 is strictly positive real

then θ̂(t) will converge such that

E[ε(t, θ̂)− e(t)]2 = 0

If model and process have the same order, this implies

θ̂(t)−→ θ as t −→ ∞
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RPEM

A Unified Algorithm

Looking at all the previous algorithms, it is obvious that they all have the
same form, with only different parameters. They can all be represented by a
recursive prediction - error method (RPEM).

RPEM

θ̂(t +1) = θ̂(t)+K(t +1)ε(t +1)
K(t +1) = P(t)z(t +1)/[1+ xT(t +1)P(t)z(t +1)]

P(t +1) = P(t)− P(t)z(t +1)xT(t +1)P(t)
[1+ xT(t +1)P(t)x(t +1)]
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