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Introduction Objectives

Objectives

Course Objective:

To give an overview of the theory and practice of the
mainstream adaptive control techniques

Four assignments: 15% each
Project: 40%
Textbook:

K.J. Åström and B. Wittenmark, Adaptive Control, Addison-Wesley
Publishing Co., Inc., Reading, Massachusetts, 1995. (This book is
out of print, but is downloadable from the internet)
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Introduction Books

Related Books

N. Hovakimyan, C. Cao, L1 Adaptive Control theory, SIAM Press, Philadelphia, 2010.

P. Ioannou and B. Fidan, Adaptive Control Tutorial, SIAM Press, Philadelphia, 2006.

V. Bobal, J. Bohm, J. Fessl and J. Macacek, Digital Self-Tuning Controllers, Springer-Verlag, Berlin, 2005.

Landau, Lozano and M’Saad, Adaptive Control, Springer-Verlag, Berlin, 1998.

Isermann, Lachmann and Matko, Adaptive Control Systems, Prentice-Hall, Englewood Cliffs, NJ, 1992.

Wellstead and Zarrop, Self-Tuning Systems Control and Signal Processing, J. Wiley and Sons, NY, 1991.

Bitmead, Gevers and Wertz, Adaptive Optimal Control, Prentice-Hall, Englewood Cliffs, NJ, 1990.

Goodwin and Sin, Adaptive Filtering, Prediction, and Control, Prentice-Hall, Englewood Cliffs, NJ, 1984.

Ljung, and Söderström, Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA, 1983.
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Introduction Books

Course Outline

1 Introduction
2 Identification
3 Control Design
4 Self-Tuning Control
5 Model-Reference Adaptive Control
6 Properties of Adaptive Controllers
7 Auto-Tuning and Gain Scheduling
8 Implementation and Practical Considerations
9 Extensions
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Background Definitions

What Is Adaptive Control?

According to the Webster’s dictionary, to adapt means:
to adjust oneself to particular conditions
to bring oneself in harmony with a particular environment
to bring one’s acts, behaviour in harmony with a particular
environment

According to the Webster’s dictionary, adaptation means:
adjustment to environmental conditions
alteration or change in form or structure to better fit the environment
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Background Definitions

When is a Controller Adaptive?

Linear feedback can cope with parameter changes (within some
limits)
According to G. Zames1:

A non-adaptive controller is based solely on a-priori information
An adaptive controller is based on a posteriori information as well

135th CDC, Kobe, Dec 1996
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Background Definitions

A Narrow Definition of Adaptive Control

An adaptive controller is a fixed-structure controller with
adjustable parameters and a mechanism for automatically
adjusting those parameters
In this sense, an adaptive controller is one way of dealing with
parametric uncertainty
Adaptive control theory essentially deals with finding parameter
ajustment algorithms that guarantee global stability and
convergence
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Background Definitions

Why Use Adaptive Control?

Control of systems with time-varying dynamics
If dynamics change with operating conditions in a known,
predictable fashion, use gain scheduling
If the use of a fixed controller cannot achieve a satisfactory
compromise between robustness and performance, then and
only then, should adaptive control be used

Use the simplest technique that meets the specifications 2

2. . . or as A. Einstein apparently once said: “make things as simple as possible, but
no simpler”
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Background Process Variations

Feedback and Process Variations

Consider the feedback loop:

ysp u y

+
-

C P

Controller Process

The closed-loop transfer function is

T =
PC

1 + PC

Differentiating T with respect to P:
dT

T
=

1

1 + PC

dP

P
= S

dP

P

T and S are respectively known as the complementary sensitivity and the sensitivity functions. Note that

S + T = 1
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Background Process Variations

Feedback and Process Variations

The closed-loop transfer function is NOT sensitive to process
variations at those frequencies where the loop transfer function
L = PC is large
Generally L >> 1 at low frequencies, and L << 1 at high
frequencies
However, L >> 1 can only be achieved in a limited bandwidth,
particularly when unstable zeros are present
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Background Process Variations

Judging the Severity of Process Variations

Difficult to judge impact of process variations on closed-loop
behaviour from open-loop time responses

Significant changes in open-loop responses may have little effect
on closed-loop response
Small changes in open-loop responses may have significant effect
on closed-loop response

Effect depends on the desired closed-loop bandwidth
Better to use frequency responses
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Background Example 1

Effect of Process Variations

Consider the system given by

G(s) =
1

(s + 1)(s + a)

Open loop step responses for a = −0.01, 0, 0.01:
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Figure: Open-loop responses
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Background Example 1

Effect of Process Variations
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Figure: Closed-loop responses for unit feedback
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Background Example 1

Effect of Process Variations
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Figure: Open-loop Bode plots
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Background Example 1

Effect of Process Variations
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Figure: Closed-loop Bode plots
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Background Example 2

Effect of Process Variations

Consider now the system

G(s) =
400(1− sT )

(s + 1)(s + 20)(1 + sT )

Open-loop responses for T = 0, 0.015, 0.03:
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Figure: Open-loop responses
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Background Example 2

Effect of Process Variations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

Step Response

Time (sec)

Am
pl

itu
de

T=0
T=0.015
T=0.03

Figure: Unit-feedback closed-loop responses
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Background Example 2

Effect of Process Variations
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Figure: Open-loop Bode plots
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Background Example 2

Effect of Process Variations
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Figure: Unit-feedback closed-loop Bode plots
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Background Example 2

Effect of Process Variations

Consider now the same system but with a controller
C(s) = 0.075/(s + 1):
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Figure: New closed-loop responses
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Background Example 2

Effect of Process Variations
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Figure: New closed-loop Bode plots
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Background Example 2

Mechanisms for Process Dynamics Changes

Nonlinear actuators or sensors
Nonlinear valves
pH probes

Flow and speed variations
Concentration control
Steel rolling mills
Paper machines
Rotary kilns
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Background Example 2

Mechanisms for Process Dynamics Changes

Wide operating range with a nonlinear system
Flight control

Variations in Disturbance Dynamics
Wave characteristics in ship steering
Raw materials in process industries
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Adaptive Schemes Gain Scheduling

Gain Scheduling

In many cases, process dynamics change with operating
conditions in a known fashion

Flight control systems
Compensation for production rate changes
Compensation for paper machine speed

Controller parameters change in a predetermined fashion with
the operating conditions
Is gain scheduling adaptive?
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Adaptive Schemes Gain Scheduling

Gain Scheduling

Setpoint
Input Output

Controller
parameters Gain 

schedule

Controller Process
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Adaptive Schemes Development of Adaptive Control

Development of Adaptive Control

Mid 1950s: Flight control systems (eventually solved by gain
scheduling)
1957: Bellman develops dynamic programming
1958: Kalman develops the self-optimizing controller “which
adjusts itself automatically to control an arbitrary dynamic
process”
1960: Feldbaum develops the dual controller in which the control
action serves a dual purpose as it is “directing as well as
investigating”
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Adaptive Schemes Development of Adaptive Control

Development of Adaptive Control

Mid 60s-early 70s: Model reference adaptive systems

But now came a technical problem that spelled the end. The Honeywell adaptive flight control system began a
limit-cycle oscillation just as the plane came out of the spin, preventing the system’s gain changer from reducing
pitch as dynamic pressure increased. The X-15 began a rapid pitching motion of increasing severity. All the
while, the plane shot downward at 160,000 feet per minute, dynamic pressure increasing intolerably. . . . As the
X-15 neared 65,000 feet, it was speeding downward at Mach 3.93 and experiencing over 15 g vertically, both
positive and negative, and 8 g laterally. It broke up into many pieces amid loud sonic rumblings, . . . Then an Air
Force pilot, . . . , spotted the main wreckage . . . . Mike Adams was dead and the X-15 destroyed.
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Adaptive Schemes Development of Adaptive Control

Development of Adaptive Control

Late 60s-early 70s: System identification approach with recursive
least-squares
Early 1980s: Convergence and stability analysis
Mid 1980s: Robustness analysis
1990s: Multimodel adaptive control
1990s: Iterative control
2000s: L1 adaptive control: fast adaptation with guaranteed
robustness.
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Adaptive Schemes Model Reference Adaptive Control

Model Reference Adaptive Control

Performance specifications given in terms of reference model
Originally introduced for flight control systems (MIT rule)
Nontrivial adjusment mechanism
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Adaptive Schemes Model Reference Adaptive Control

Model Reference Adaptive Control

Setpoint

Input Output

Controller
parameters

Adjustment 
mechanism

Controller Process

Model Model
output
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Adaptive Schemes Self-Tuning Control

Self-Tuning Controller

Model-based tuning consists of two operations:
Model building via identification
Controller design using the identified model

Self-tuning control can be thought of as an automation of this
procedure when these two operations are performed on-line
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Adaptive Schemes Self-Tuning Control

Self-Tuning Controller

Setpoint

Input Output

Controller
parameters

Recursive
estimation

Controller Process

Control
design

Process parameters
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Adaptive Schemes Self-Tuning Control

Self-Tuning vs. Auto-Tuning

Self-tuning
Continuous updating of controller parameters
Used for truly time-varying plants

Auto-tuning
Once controller parameters near convergence, adaptation is
stopped
Used for time invariant or very slowly varying processes
Used for periodic, usually on-demand tuning
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Adaptive Schemes Self-Tuning Control

Final Motivation...
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Adaptive Schemes Self-Tuning Control

Final Motivation...
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Dual Control

Dual Control: A Rigorous Approach to Adaptive
Control

Use of nonlinear stochastic control theory to derive an adaptive
controller
No distinction between parameters and state variables –
Hyperstate
The controller is a nonlinear mapping from the hyperstate to the
control variable

Setpoint

Input Output

Hyperstate
estimation

Nonlinear
mapping

Process

Hyperstate
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Dual Control

A Rigorous Approach to Adaptive Control

Can handle very rapid parameter changes
Resulting controller has very interesting features:

Regulation
Caution
Probing

Unfortunately solution is untractable for most systems
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Dual Control

Illustration of Dual Control

Consider the simple process

y(t + 1) = y(t) + bu(t) + e(t + 1)

where e(t) is zero-mean white noise N(0, σ), y(t)and u(t) are the
output and the input signals.

One-stage control

Find u(t) that minimizes

I1 = E [y2(t + 1)|y(t),u(t)]
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Dual Control Certainty equivalence controller

Certainty Equivalence Controller

In case b is known, the solution is trivial:

min I1 = min [y(t − 1) + bu(t − 1)]2 + σ2 = σ2

since e(t) is independent of y(t − 1), u(t − 1) and b.

u(t) = −y(t)
b

I1opt = σ2
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Dual Control Certainty equivalence controller

Certainty Equivalence Controller

Now, assume that b is unknown.
We now have an estimate b̂ with covariance pb
If least-squares is used:

b̂ =

{
t∑

s=1

[y(s)− y(s − 1)]u(s − 1)

}
/

t∑
s=1

u2(s − 1)

pb = σ2/

t∑
s=1

u2(s − 1)
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Dual Control Certainty equivalence controller

Certainty Equivalence Controller

The most direct way to control the system is simply to replace b by b̂ in
the controller above, thus ignoring the uncertainty:

uce(t) = −y(t)
b̂

then
I1ce = σ2 +

pb

b̂2
y2(t − 1)
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Dual Control Cautious Controller

Cautious Controller

Performing the minimization of I1 actually gives:

u(t) = − b̂
b̂2 + pb

y(t)

and the minimum performance index

I1caut = σ2 +
pb

b̂2 + pb
y2(t − 1)
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Dual Control Cautious Controller

Cautious Controller

Because pb is positive, the cautious controller has a smaller gain
than the certainty equivalence one, which by ignoring uncertainty
may be at times too bold
Turn-off phenomenon:

When the uncertainty pb is large, controller gain is small and so
does the control action
So, unless an external perturbation is added to the input, no
learning can take place and the uncertainty pb cannot be reduced

This highlights the importance of probing signals

Guy Dumont (UBC) EECE 574 Overview 43 / 49



Dual Control Dual Controller

Dual Controller

N-stage control

Find u(t) that minimizes

IN = E [
N∑
1

y2(t + i)|y(t),u(t)]

By using the N-stage control problem with N > 1, it can be shown
that the effect of present inputs on the future values of b̂ and pb
enters the minimization of IN
Indeed it is sometimes beneficial to sacrifice short term
performance by sending a probing signal to reduce the
uncertainty, and thus improve performance in the long term
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Dual Control Dual Controller

Dual Controller

Using dynamic programming, a functional equation (Bellman
equation) can be derived
However, this equation can only be solved numerically and for
very simple cases
For large N, the control tends towards a steady-state control law
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Dual Control Dual Controller

Dual Controller

Define

η =
y
σ

β =
b̂
pb

µ = − b̂u
y

µ = 1 corresponds to the certainty-equivalence controller
µ = β2/(1 + β2) corresponds to the cautious controller
Dual controller for large N is:

µ =
β2 − 0.56β

β2 + 0.08β + 2.2
+

(
1.9β

β4 + 1.7

)
1
η
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Dual Control Dual Controller

Dual Controller
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Figure: Dual control map
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Dual Control Dual Controller

Properties of the Dual Controller

Dual control finds the best compromise between
boldness
caution
probing

Low uncertainty→ boldness prevails
Large uncertainty + large control error→ caution prevails
Large uncertainty + small control error→ probing prevails

Guy Dumont (UBC) EECE 574 Overview 48 / 49



Implications forAdaptive Control

Implications for Adaptive Control

The dual controller is in general impossible to compute
Most current adaptive control methods enforce certainty
equivalence
Thus, learning is passive rather than active
Passive learning is a shortcoming of current adaptive control
methods
Practical methods of active learning attractive for

Commissioning of adaptive controllers
Adaptive control of processes with rapidly time-varying dynamics
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